Loading [MathJax]/jax/output/SVG/jax.js
高级检索

基于激光技术区分不同金相组织的研究

薛博文, 崔敏超, 汪晨旭, 缪子繁, 廖萍, 赵升吨

薛博文, 崔敏超, 汪晨旭, 缪子繁, 廖萍, 赵升吨. 基于激光技术区分不同金相组织的研究[J]. 激光技术, 2018, 42(6): 806-810. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.015
引用本文: 薛博文, 崔敏超, 汪晨旭, 缪子繁, 廖萍, 赵升吨. 基于激光技术区分不同金相组织的研究[J]. 激光技术, 2018, 42(6): 806-810. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.015
XUE Bowen, CUI Minchao, WANG Chenxu, MIAO Zifan, LIAO Ping, ZHAO Shengdun. Distinguishing different metallographic structures based on laser technology[J]. LASER TECHNOLOGY, 2018, 42(6): 806-810. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.015
Citation: XUE Bowen, CUI Minchao, WANG Chenxu, MIAO Zifan, LIAO Ping, ZHAO Shengdun. Distinguishing different metallographic structures based on laser technology[J]. LASER TECHNOLOGY, 2018, 42(6): 806-810. DOI: 10.7510/jgjs.issn.1001-3806.2018.06.015

基于激光技术区分不同金相组织的研究

基金项目: 

江苏省企业创新与成果转化专项资金资助项目 BA2015106

江苏省企业创新与成果转化专项资金资助项目 BA2015107

国家自然科学基金资助项目 51335009

详细信息
    作者简介:

    薛博文(1993-), 男, 硕士研究生, 现主要从事激光检测方面的研究

    通讯作者:

    廖萍, E-mail:liao.p@ntu.edu.cn

  • 中图分类号: O433.4

Distinguishing different metallographic structures based on laser technology

  • 摘要: 为了研究激光技术应用于区分不同金相组织的可行性,采用不同的热处理方法分别得到珠光体+铁素体和马氏体这两种不同的金相组织的钢样,选择合适的激光脉冲能量,对比分析了激光诱导击穿光谱的谱线强度与金相组织的关系,用主成分分析法对不同金相组织进行了区分。结果表明,不同金相组织的谱线强度不同,其中珠光体+铁素体组织的谱线强度较大,基体元素Fe的谱线强度差异比合金元素Mn的谱线强度差异大;不同金相组织呈现一定分布特性,主成分分析法能对不同金相组织进行区分,其中在波长范围280nm~320nm内区分效果最好。该研究验证了激光技术具有区分不同金相组织的能力。
    Abstract: In order to study the feasibility that laser technology was used to distinguish different metallographic structures, two different metallographic structures of pearlite + ferrite and martensite were obtained by different heat treatment methods. The suitable laser pulse energy was chosen, and the relationship between breakdown spectral line strength induced by laser and metallographic group was analyzed and compared. The principal component analysis was used to distinguish the different metallographic structures. The experimental results show that the spectral line intensity of different metallographic structures is different. The spectral line intensity of pearlite + ferrite structure is larger. The difference of spectral line strength with matrix element Fe is larger than that with matrix element alloy Mn. Different metallographic structures show certain distribution characteristics. Principal component analysis method can distinguish the different metallographic structures. The distinguishing result is the best in wavelength range of 280nm~320nm. This study proves that laser technology has the ability to distinguish different metallographic structures.
  • 数十年来,建筑业伴随着中国国民经济得到了飞速发展,大量的重大工程结构纷纷涌入公众视野[1]。时至今日,这些重大工程结构已经各自进入了其服役的中期或中后期,及时获取这些结构服役期间的状态信息以确保它们的安全运营显得尤为重要,因此,结构健康监测(structural health monitoring,SHM)逐渐开始受到社会各界的广泛重视[2-3]。在健康监测系统的实际应用中,传统的传感器如电阻应变片、钢弦计等,由于其耐久性和稳定性难以满足长期健康监测的需要,限制了健康监测领域的发展[4]。随着我国对智能材料研究工作的深入开展,光纤布喇格光栅(fiber Bragg grating,FBG)以其轻质柔软、精度高、抗电磁干扰、抗零飘等优越特性脱颖而出,已被长期结构健康监测作为局部监测的首选敏感元件,被认为是目前最有前景的传感器之一[5]。经过了国内外学者的大量研究,光纤光栅传感器在许多方面得到了发展,如光纤光栅的封装工艺、应变传递机理、应变传感特性等。由于结构健康监测需求日益增加,普通的单点式监测在某些方面如裂缝监测、损伤定位等已经达不到预期的理想监测效果。专家学者根据传感器的复用理论提出了FBG的准分布方式,将单点的参量测量拓扑为多点的网络监测。本文中在此理论基础上进行了钢筋混凝土梁的裂缝监测试验和工字型钢梁的损伤定位试验,将构件的关键部位进行单元划分并以准分布式FBG传感器进行覆盖,通过多点即时监测,利用各测点光栅的应变变化进行分析,从而裂缝监测和损伤定位[6-8]

    光纤布喇格光栅其工作原理是通过对光栅中心反射波长的测量从而得到目标参量,其中心波长λB与光栅周期Λ、纤芯有效折射率neff满足如下关系:

    λB=2neffΛ (1)

    可见,布喇格光栅中心波长取决于光栅周期和光纤有效折射率,任何使这两个参量变化的外界因素都会引起波长变化[9]。其中,应变和温度是能够显著改变布喇格光栅中心波长的两个物理量。波长漂移与应变和温度的关系如下:

    ΔλB=(1Pe)ΔελB+(α+ξ)ΔTλB (2)

    式中,Δε是轴向应变变化量,ΔT是温差, Pe是光纤有效弹光系数, αξ分别是光纤的热膨胀系数和热光系数。

    FBG传感器具有波长编码的特性,使得波分复用方案在FBG传感器的准分布方式中得到了研究及应用[10-11]。在该方案中,多个光纤光栅沿着同一根光纤分布,每个光栅都有各自的中心波长且互不重复,因此各光栅的反射光谱相互独立[12]。在一根或者多根光纤上布置若干个光纤光栅,通过光纤光栅解调仪进行数据采集继而传输至控制室完成数据的保存和分析,即可实现平面或空间中的准分布传感系统[13-15]。如图 1所示,在大范围内通过该方案可以实现多点实时监测。

    Figure 1. Quasi-distributed sensor network
    Figure  1.  Quasi-distributed sensor network

    本文中,光纤光栅解调仪采用美国MOI公司生产的SM130光纤光栅传感解调仪,分辨率小于1pm,精度小于10pm,扫描频率为1kHz;数据采集软件为Enlight v1.138。

    图 2中,若将待测区划分成10个单元,将带有10个光栅的准分布式光纤布喇格光栅传感器中粘贴于该待测区,保证每个光栅均处于各自所在单元中心。由于整个光纤部分与待测区用胶水完全固定,故所测得应变实际为点应变。本文中,准分布式FBG传感器均采用纤维增强复合材料进行封装,外观如图 3所示。

    Figure 2. Sketch map of quasi-distributed FBG sensor
    Figure  2.  Sketch map of quasi-distributed FBG sensor
    Figure 3. Quasi-distributed FBG sensor packed by fiber reinforced polymer
    Figure  3.  Quasi-distributed FBG sensor packed by fiber reinforced polymer

    试验对象为一个钢筋混凝土简支梁,混凝土强度等级为C25,纵向受力钢筋等级为HRB335,表 1为该梁的截面参量。在跨中的780mm上设置分配梁,在分配梁跨中施加集中荷载,试验系统示意图见图 4

    Table  1.  Interface parameters of concrete beam
    bottom steel 21 2 top steel 2 8 stirrup of encryption area 8@80
    width of beam height of beam thickness of protective layer
    120mm 160mm 25mm
    下载: 导出CSV 
    | 显示表格
    Figure 4. Schematic diagram of crack monitoring test system
    Figure  4.  Schematic diagram of crack monitoring test system

    将集中荷载通过分配梁施加于试验构件,由此构件在分配梁支座之间的区段中产生纯弯段。将此区段划分为6个单元,依次记为C1~C6,并在表面粘贴准分布点式FBG传感器。传感器内包含6个光栅,记为F1~F6,各光栅的中心波长分别为1526.260nm,1550.582nm,1559.553nm,1571.532nm,1577.473nm和1580.380nm,光栅的位置由各个单元的中心确定。

    试验对象为工字型简支钢梁,表 2为该梁的截面参量。工字梁跨度为1820mm,在跨中的780mm上设置分配梁,在分配梁跨中施加集中荷载,试验系统示意图见图 5

    Table  2.  Interface parameters of H-shaped steel beam
    height width thickness of web average thickness of flange
    180mm 94mm 6.5mm 10.7mm
    下载: 导出CSV 
    | 显示表格
    Figure 5. Schematic diagram of damage location test system
    Figure  5.  Schematic diagram of damage location test system

    将在分配梁区段内的钢梁跨中部分划分为12个单元,记为C1′~ C12′,本试验中采用切除部分工字钢上下翼缘的方式构造损伤,设定3种工况:(1)无损伤(记为W1);(2)有一处损伤,在C4′处(记为W2);(3)有两处损伤,分别在C4′和C8′处(记为W3)。试验中准分布FBG传感器中共有6个光纤光栅,记为F1~F6,中心波长分别为1526.576nm,1550.962nm,1559.936nm,1571.899nm,1577.811nm和1580.709nm,传感器沿钢梁纵向粘贴在下翼缘中心,每个光栅落于两个单元中心。图 6为传感器布置示意图。

    Figure 6. Diagrammatic sketch of the location of sensors
    Figure  6.  Diagrammatic sketch of the location of sensors

    试验采用逐级加载,每级2.5kN。通过目测,荷载加载至第3级(即5kN~7.5kN)时,在C4中产生了裂缝。故取出0kN~7.5kN共3级加载下的各测点应变数据(见表 3)进行分析。

    Table  3.  Strain values of each grating
    load/kN strain values of each grating/με
    F1 F2 F3 F4 F5 F6
    0 0 0 0 0 0 0
    2.5 51.75 53.3 54.17 44.86 45.05 44.95
    5 116.7 125.83 123.79 96.02 98.34 92.82
    7.5 221.84 274.95 259.71 279.8 181.36 144.27
    下载: 导出CSV 
    | 显示表格

    在第1级荷载(0kN~2.5kN)加载中,由于在纯弯段内各测点应变均相等,试验数据中各测点应变增量在44.86με~54.17με之间,波动范围较小,混凝土基本处于弹性阶段,与实际情况相符。

    在第2级荷载(2.5kN~5.0kN)加载中,F1~F3的应变增量在65με~72με之间,F4~F6的应变增量在48με~52με之间,明显两边的应变增量已经开始不再同步,混凝土已经不再处于弹性阶段,可以判断F3和F4所在单元范围内即将出现裂缝。

    在第3级荷载(5.0kN ~7.5kN)加载中,F1~F6的应变增量为:105με,149με,136με,183με,83με和52με。此时F4处应变发生了突变,且其增量明显达到了各测点中的最大值,可以判断此时裂缝在C4处已经出现;试验和分析结果与实际情况(见图 7)相符。

    Figure 7. Position of the first crack
    Figure  7.  Position of the first crack

    试验采用逐级加载,4kN为1级,加至48kN,任意选取第11级(44kN)荷载作用下3种工况中各光栅测点应变数据如图 8所示。

    Figure 8. Date of strains in measuring points
    Figure  8.  Date of strains in measuring points
    a—strains of measuring points under three cases b—between case 1 and case 2 c—between case 1 and case 3 d—between case 2 and case 3

    图 8a中,3种工况下各测点应变不同,可知其中两种工况下的钢梁有损伤;图 8b中,F2处应变变化最大,F3处应变变化明显大于F1,可知F2覆盖的单元(C3′和C4′)内有损伤且该损伤靠近F3所覆盖的C5′,即C4′损伤;图 8c中,F4处应变变化最大,由于C4′的损伤对F3和F5带来了影响,故两处应变变化相差不大,只能初步确定损伤发生在F4所覆盖范围中;图 8d中,F4处应变变化最大,F5处应变变化明显大于F3,因而可以确定C8′有损伤。分析结果与实际情况相符。

    通过准分布方式对传统单测点式FBG传感器进行了测量范围的拓展。以裂缝监测和损伤定位两个试验对其实际工程应用价值进行了论证。

    (1) 在裂缝监测试验中,在其监测的关键部位划分单元并以准分布式FBG覆盖,随荷载的增加,可以通过各光栅的应变增量变化情况可以用来感知裂缝的出现进而对其进行定位。与实际情况相比较可知,此方案可以有效实现裂缝监测。

    (2) 在损伤定位试验中,同样在可能发生损伤的部位划分单元以准分布式FBG覆盖,通过光栅当前应变与其未损伤时的应变差值可以用作损伤定位。试验结果证明,此方案可以有效地对损伤进行探测进而定位。

    (3) 基于波分复用所开发的准分布式FBG传感器, 在一定范围内对待测区进行单元划分后通过对多个单元上的测点应变值数据分析,便可实现有效的、目标性监测。其监测的精度与单元的划分相关。此外,若对此准分布进行更为复杂的空间网络拓扑,即可获得更为详细的结构信息。

  • Figure  1.   Schematic diagram of experimental system

    Figure  2.   Spectrum of steel samples with different microstructures

    a—400nm~410nm b—240nm~320nm

    Figure  3.   The changes of line intensity of Mn with different laser energy

    Figure  4.   Spectral line intensity of the samples

    Figure  5.   Principal component analysis of the spectra in 240nm~320nm

    Figure  6.   Principal component analysis of different spectra

    a—240nm~280nm b—280nm~320nm

    Table  1   Element contents of S45C steel

    element mass fraction
    C 0.0042~0.0048
    Si 0.0015~0.0035
    Mn 0.0060~0.0090
    P ≤0.00030
    S ≤0.00035
    Cu ≤0.0030
    Ni ≤0.0020
    Cr ≤0.0020
    Fe the rest
    下载: 导出CSV

    Table  2   Spectral lines of the analyzed elements

    element wavelength/
    nm
    El/
    cm-1
    Eu/
    cm-1
    A/
    108 s-1
    ∑Mn 403.076 0 24808.25 0.170
    403.307 0 24788.05 0.165
    403.449 0 24779.32 0.158
    Fe 1 400.524 12560.934 37521.161 0.204
    Fe 2 404.581 11976.239 36686.176 0.862
    Fe 3 406.359 12560.934 37162.746 0.665
    Fe 4 407.174 12968.554 37521.161 0.764
    Fe 5 260.683 7376.764 45726.130 0.243
    Fe 6 275.014 415.933 36766.966 0.274
    Fe 7 304.174 7728.060 40594.432 0.052
    下载: 导出CSV
  • [1]

    CHEN J Zh, CHEN Zh Y, SUN J, et al. Enhancement on laser-induced plasma spectroscopy with a flat mirror[J]. Journal of Optoelectronics·Laser, 2013, 24(9):1838-1843(in Chinese).

    [2]

    ZHENG X F, YANG R, TANG X Sh, et al. An investigation on the electron and ion property of the laser produced plasma under additional static electricity field[J]. Chinese Journal of Atomic and Molecular Physics, 2002, 19(1):1-5(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yzyfzwlxb200201001

    [3]

    MATEO M P, CABALÍN L M, LASERNA J J. Automated line-focused laser ablation for mapping of inclusions in stainless steel[J].Applied Spectroscopy, 2003, 57(12):1461-1467. DOI: 10.1366/000370203322640080

    [4]

    LIU X Y, WANG Zh Y, HE L Q, et al. Application of laser induced breakdown spectroscopy technology in biomedicine field[J]. Laser Technology, 2008, 32(2):134-136(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200802008.htm

    [5]

    MICHEL A P M, CHAVE A D. Analysis of laser-induced breakdown spectroscopy spectra:the case for extreme value statistics[J]. Spectrochimica Acta, 2007, B62(12):1370-1378. http://www.sciencedirect.com/science/article/pii/S0584854707003308

    [6]

    TELLE H H, BEDDOWS D C S, MORRIS G W, et al. Sensitive and selective spectrochemical analysis of metallic samples:the combination of laser-induced breakdown spectroscopy and laser-induced fluorescence spectroscopy[J]. Spectrochimica Acta, 2001, B56(6):947-960. http://www.sciencedirect.com/science/article/pii/S0584854701001902

    [7]

    SALLÉ B, LACOUR J L, VORS E, et al. Laser-induced breakdown spectroscopy for mars surface analysis:capabilities at stand-off distances and detection of chlorine and sulfur elements[J]. Spectrochimica Acta, 2004, B59(9):1413-1422. http://www.sciencedirect.com/science/article/pii/S0584854704001569

    [8]

    NICOLAS G, MATEO M P, YAÑEZ A, The use of laser-induced plasma spectroscopy technique for the characterization of boiler tubes[J]. Applied Surface Science, 2007, 254(4):873-878. DOI: 10.1016/j.apsusc.2007.08.069

    [9]

    FICHET P, MAUCHIEN P, WAGNER J F, et al. Quantitative elemental determination in water and oil by laser induced breakdown spectroscop[J]. Analytica Chimica Acta, 2001, 429(2):269-278. DOI: 10.1016/S0003-2670(00)01277-0

    [10]

    CLEGG S M, SKLUTE E, DYAR M D, et al. Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques[J]. Spectrochimica Acta, 2009, B64(1):79-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cae5037ab9ebfa3852707e3489cfc0b5

    [11]

    LAVILLE S, SABSABI M, DOUCET F R. Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration. Spectrochimica Acta, 2007, B62(12):1557-1566. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94c1d9e268c5763277cf89ad9c7a3f10

    [12]

    ABDEL-SALAM Z, ABDELHAMID M, KHALIL S M, et al. LIBS new application:determination of metallic alloys surface hardness[J]. AIP Conference Proceedings, 2009, 1172(1):49-52. http://adsabs.harvard.edu/abs/2009AIPC.1172...49A

    [13]

    TSUYUKI K, MIURA S, IDRIS N, et al. Measurements of concrete strength using the emission intensity ratio between Ca Ⅱ 396.8nm and Ca Ⅰ 422.6nm in a Nd:YAG laser induced plasma[J]. Applied Spectroscopy, 2006, 60(1):61-64. DOI: 10.1366/000370206775382668

    [14]

    YAO Sh Ch. The application of laser induced breakdown spectroscopy for diagnosis of power station[D]. Guangzhou: South China University of Technology, 2011: 101-122(in Chinese).

    [15]

    YAO S, LU J, CHEN K, et al. Study of laser-induced breakdown spectroscopy to discriminate pearlitic/ferritic from martensitic phases[J]. Applied Surface Science, 2011, 257(7):3103-3110. DOI: 10.1016/j.apsusc.2010.10.124

    [16]

    PAN Sh H, LU J D, YAO Sh Ch, et al. Impact of metallurgical structure on laser introduced steel plasma[J]. Chinese Journal of Lasers, 2010, 37(8):2126-2130(in Chinese). DOI: 10.3788/CJL

    [17]

    DAI Y, LI J, LU J D, et al. Plasma characteristics of different microstructure of steel 12Cr1MoV[J]. Acta Optica Sinica, 2014, 34(3):0330003(in Chinese). DOI: 10.3788/AOS

    [18]

    LI J Y, LU J D, LI J, et al. Laser-induced plasma spectra of heating surface materials with different hardnesses[J]. Chinese Journal of Lasers, 2011, 38(8):08185002(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JJZZ201108045.htm

    [19]

    NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. NIST atomic spectra database lines form[EB/OL].[2009-10-11].http://physics.nist.gov/PhysRefData/ASD/lines_form.html.

    [20]

    RUSSO R E, MAO X L, MAO S S. Peer reviewed:the physics of laser ablation in microchemical analysis[J]. Analytical Chemistry, 2002, 74(3):70-77. http://www.ncbi.nlm.nih.gov/pubmed/11838700

    [21]

    MARTIN M Z, LABBÉ N, RIALS T G, et al. Analysis of preservative-treated wood by multivariate analysis of laser-induced breakdown spectroscopy spectra[J]. Spectrochimica Acta, 2005, B60(7/8):1179-1185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8699c276235c79dd13536b4099fe1b0d

    [22]

    MUNSON C A, de LUCIA F C, Jr, PIEHLER T, et al. Investigation of statistics strategies for improving the discriminating power of laser-induced breakdown spectroscopy for chemical and biological warfare agent simulants[J]. Spectrochimica Acta, 2005, B60(7/8):1217-1224. http://www.sciencedirect.com/science/article/pii/S0584854705001497

    [23]

    KIM G, KWAK J, KIM K R, et al. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS)[J]. Journal of Hazardous Materials, 2013, 263(2):754-760. http://www.ncbi.nlm.nih.gov/pubmed/24231316

  • 期刊类型引用(9)

    1. 宋涵,赵光耀,张锋,王振,张昆桥. 柔性铰链多级增敏的光纤应变传感器设计应用. 数字制造科学. 2024(02): 89-94 . 百度学术
    2. 韩颖,张旭,于明鑫,庄炜. 基于改进LSTM的FBG传感网络光谱基线校正方法. 光通信研究. 2024(04): 42-49 . 百度学术
    3. 张子娇,刘万泉,张旭,吕峥,庄炜. 基于KMeans的MG-Y激光器准连续调谐方法. 光通信研究. 2024(04): 83-88 . 百度学术
    4. 秦根朝,孟凡勇,李红,庄炜,董明利. 光纤光栅链路反射谱强度自适应解调. 红外与激光工程. 2022(05): 245-252 . 百度学术
    5. 刘浩,吴静红,杨鹏,魏广庆,唐柏鉴. 混凝土结构裂缝高空间分辨率应变测量技术探测模拟试验. 苏州科技大学学报(工程技术版). 2020(02): 23-30 . 百度学术
    6. 李莹莹,刘智超. 基于FBG的复杂面形应变场检测系统研究. 激光技术. 2020(05): 652-656 . 本站查看
    7. 江灏,周清旭,陈静,缪希仁. 畸变光谱下光纤布拉格光栅传感网络波长检测优化方法. 光学学报. 2019(10): 92-101 . 百度学术
    8. 吴永红,朱莎,许蔚,张海明. 分布式光纤裂缝传感工程应用研究进展. 激光与光电子学进展. 2018(09): 15-28 . 百度学术
    9. 宋言明,孟凡勇,娄小平,祝连庆. 采用FBG正交传感网络的静载识别研究. 电子测量与仪器学报. 2017(08): 1227-1232 . 百度学术

    其他类型引用(9)

图(6)  /  表(2)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 18
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-03-05
  • 发布日期:  2018-11-24

目录

/

返回文章
返回