-
当平行光照射在保偏光纤侧面时,由于光纤具有类似柱面透镜的作用,在光纤右侧较大范围成像面上可得特定光强分布,随着光纤旋转,该光强分布也会随之发生变化,选择适当的特征值建立其与偏振轴方位角的关系,通过分析可得以0°为旋转起始位置的标准分布曲线,以任意角度起始的特征值曲线与标准曲线互相关,得到的最大值就是起始角度。
建立光强特征值与偏振轴方位角的标准曲线,两者对应关系可表示为T(θ+θ0),其中,θ表示旋转角,θ0表示起始方位角。将T(θ+θ0)展开成傅里叶级数形式:
$ \begin{align} &T\left( \theta +{{\theta }_{0}} \right)=\text{ }\frac{{{a}_{0}}~}{2}+\sum\limits_{n=1}^{\infty }{[{{a}_{n}}({{\theta }_{0}})}\times \\ &\ \ \ \ \ \ \text{cos}\left( n\theta \right)+{{b}_{n}}({{\theta }_{0}})\text{sin}(n\theta )] \\ \end{align} $
(1) 式中, an(θ0)和bn(θ0)为傅里叶系数, an(θ0), bn(θ0)分别为:
$ \begin{align} &{{a}_{n}}\left( {{\theta }_{0}} \right)=\frac{1}{\text{ }\!\!\pi\!\!\text{ }}\int_{0}^{2\pi }{T(\theta +{{\theta }_{0}})\times } \\ &\ \text{cos}(n\theta )\text{d}\theta , (n=0, 1, 2, \ldots ) \\ \end{align} $
(2) $ \begin{align} &{{b}_{n}}({{\theta }_{0}})=\text{ }\frac{1}{\text{ }\!\!\pi\!\!\text{ }}\int_{0}^{2\pi }{T(\theta +{{\theta }_{0}})}\times \\ &\ \ \text{sin}(n\theta )\text{d}\theta , (n=0, 1, 2, \ldots )~ \\ \end{align} $
(3) 由保偏光纤几何对称性得T(θ)为偶函数:
$ T\left( \theta \right)=T\left( -\theta \right) $
(4) 且有:
$ T(\theta +\frac{k\pi }{2})=T(-\theta +\frac{k\pi }{2}), (k=0, 1, 2, \ldots ) $
(5) 从而有:
$ {{a}_{n}}\left( 0 \right)=0;{{a}_{n}}({{\theta }_{0}})=0, \left( n=1, 3, 5, \ldots \right)~ $
(6) $ {{b}_{n}}\left( 0 \right)=0;{{b}_{n}}({{\theta }_{0}})=0, (n=1, 3, 5, \ldots )~ $
(7) 于是可得保偏光纤的初始方位角:
$ {{\theta }_{0}}=-\text{arctan}\{[{{b}_{2}}({{\theta }_{0}})/{{a}_{2}}({{\theta }_{0}})]/2\}, ({{a}_{2}}\ge 2{{a}_{4}}) $
(8) $ {{\theta }_{0}}=-\text{arctan}\{[{{b}_{4}}({{\theta }_{0}})/{{a}_{4}}({{\theta }_{0}})]/2\}, ({{a}_{2}}<2{{a}_{4}}) $
(9) 得到初始方位角θ0后,步进电机带动光纤旋转至偏振轴位置,可得标准光强分布:
$ \begin{align} &\ \ \ \ {{T}_{\text{s}}}(\theta +{{\theta }_{0}})=\text{ }\frac{{{a}_{0}}}{2}+ \\ &\ \sum\limits_{n=1}^{4}{\{{{a}_{2n}}(0)\text{cos}[2n(\theta +{{\theta }_{0}})]\}} \\ \end{align} $
(10) 将任意角度起始的光强分布与标准分布进行互相关,并将标准分布按一定步长改变,当相关系数达到最大时,所对应角度即为偏转角度。
-
图 1和图 2为在TracePro中建立的熊猫型保偏光纤光线追迹模型。图 1为单光束光源侧视成像仿真,单束光从光纤左侧水平照向光纤。图 2为双光束光源侧视成像仿真,两束光呈一定夹角照向光纤。由于保偏光纤内部材料的光学特性不同,因此,在光纤右侧的成像面上可形成一定的光强分布图像。如图 3所示,单光束照射光纤时,成像面上所成光强分布呈独峰型。如图 4所示,双光束照射光纤时,成像面上所成光强分布呈双峰型,旋转光纤使偏振轴的方位角发生改变时,成像面上得到的光强分布也会发生相应变化。
-
为验证双光束保偏光纤定轴法的可行性,利用电动旋转夹具、发光二极管(light emitting diode, LED)、电子显微镜和计算机等搭建实验平台,LED光源与反射镜搭配可形成有一定夹角的双光束光源,光纤夹具在步进电机的带动下能实现固定角度旋转,电子显微镜与计算机构成图像采集系统,通过调节显微镜的物镜可实现成像面的微调,计算机可进行图像处理和数据分析。
在单光束光源照射下,调整显微镜改变成像面位置并采集光纤的侧视成像,如图 10所示。不同成像面对应的光纤侧视成像有明显区别,个别成像面可出现五点法、五指法等所需的光强分布。但在较大范围成像面上,中心有明显亮纹的图像, 如图 11a所示。将单光束光源变为双光束光源,可得如图 11b所示的侧视成像,可见有两条明显的亮纹。利用MATLAB对采集到的图像进行光强分析,可得单光束光源侧视成像光强分布,如图 12a呈独峰型,双光束光源侧视成像光强分布,如图 12b呈双峰型,这与第1.2节中的仿真结果相同,证明利用特殊光强分布增加特征点对成像面位置调整要求较高,而通过增加光源光束增加特征点对成像面调整要求相对宽松,保留了POL法适用范围广的优点。
电动旋转夹具在步进电机带动下旋转,每次旋转后采集侧视成像并记录特征值,如第2.1节中所述,采用单光束光源时,选择光强分布的最高峰值为特征值,如第2.2节中所述,采用双光束光源时,选择光强分布的两最高峰峰值之和为特征值,分别进行互相关运算,如第2.3节中所述,对两互相关曲线进行对比,改变光纤旋转起始角,进行多次实验对比,以互相关曲线中互相关系数由1下降至0所需旋转度数作为互相关曲线锐度的参考量,将统计结果记录在表 1中。
Table 1. The rotation angle when cross-correlation coefficient decreased from 1 to 0
experiment number single beam experiment double beam experiment 1 28.5° 25.1° 2 28.4° 25.0° 3 28.5° 24.9° 4 28.4° 25.1° 5 28.4° 25.2° 通过对表 1中的数据计算可知,在5次实验中,双光束对应的互相关系数曲线锐度分别优于单光束11.93%, 11.97%, 12.63%, 11.62%, 11.27%,即采用双光束光源侧视成像时定轴灵敏度平均优于单光束光源侧视成像11.88%,证明了利用双光束光源来增加特征点数量可以提高定轴灵敏度。
基于双光束光源的保偏光纤定轴方法研究
Research of alignment method for polarization maintaining fiber based on double beam light source
-
摘要: 现有保偏光纤侧视成像法多依赖于某特定形貌光强分布,对成像面位置调整要求高、通用性差。为了提高保偏光纤定轴灵敏度、增加方法的通用性、提高定轴稳定性,采用双光束光源取代单光束光源对保偏光纤进行侧视成像的方法,改变了以往通过调整成像面寻找特定形貌光强分布的思路,并进行了理论分析、仿真模拟和实验验证。结果表明,采用双光束光源进行侧视成像时,光强分布成双峰型,选择双峰光强值之和为特征值,建立特征值与偏转角度的对应关系,利用互相关分析可对偏转角进行确定,该方法不仅保持了透镜效应侧视法适用成像面范围广的优点,而且定轴灵敏度平均优于单光束光源侧视成像定轴法11.88%。该研究具有良好的实用前景。Abstract: The current side-view imaging alignment method for polarization-maintaining fiber depended on the specific light intensity distribution, and had strict requirements on the position adjustment of the imaging plane. In order to improve the sensitivity of the fixed axis, increase the universality of the method and improve the stability of the fixed axis, a double-beam light source was used to replace the single-beam light source for the side-view imaging of the polarization maintaining fiber. The idea of finding the intensity distribution of the specific morphology by adjusting the image plane was changed. After theoretical analysis, simulation and experimental verification, the results show that, when using double-beam light source for side-view imaging, the light intensity distribution has bimodal pattern, and the sum of the bimodal light intensity values is selected as the eigenvalue to establish the corresponding relationship between the eigenvalue and the deflection angle. The deflection angle can be determined by cross-correlation analysis. This method not only maintains the advantages of wide range of imaging planes of polarization observation by the lens effect tracing(POL), but also has an axis sensitivity of 11.88% better than the single-beam side-view imaging alignment method. This method has good application prospects.
-
Table 1. The rotation angle when cross-correlation coefficient decreased from 1 to 0
experiment number single beam experiment double beam experiment 1 28.5° 25.1° 2 28.4° 25.0° 3 28.5° 24.9° 4 28.4° 25.1° 5 28.4° 25.2° -
[1] XIE H B, GONG R M, HAN L, et al. Optical system design of a portable laser Doppler velocimeter[J]. Laser Technology, 2011, 35(1):109-111(in Chinese). [2] CHEN J J, LI L F. Investigation on the slow-light characteristics of nonlinear Bragg gratings based on optical power control[J]. Laser Technology, 2015, 39(2):224-227(in Chinese). [3] ZHOU K J, ZHU J L, WEI B, et al. Research of multi-section Lyot fiber depolarizer[J]. Laser Technology, 2015, 39(6):741-744(in Chinese). [4] DIAO L, WANG W L, KONG Y, et al. Influence of temperature on output polarization degree of fiber Lyot depolarizers[J]. Laser Technology, 2015, 39(2):220-223(in Chinese). [5] XU H J, ZHANG Q, ZHANG Sh. Polarization dependence of polarization-maintaining fiber couplers based on intensity transmission matrix[J]. Laser Technology, 2013, 37(2):235-238(in Chinese). [6] CHEN D F, LU P, LIU D M. Highly sensitive curvature sensors based on polarization-maintaining photonic crystal fibers[J]. Laser Technology, 2015, 39(4):450-452(in Chinese). [7] XU W, JIN T, CHI H. Theoretical and experimental research of coupled optoelectronic oscillators[J]. Laser Technology, 2014, 38(5):579-585(in Chinese). [8] WEI X Ch, OU P, ZHANG Ch X, et al. Study on single-frequency single-polarization narrow-linewidth fiber laser and its amplification[J]. Laser Technology, 2010, 34(1):5-7(in Chinese). [9] OU P, XU H J, YANG D W, et al. Measurement of high-birefringent polarization-maintaining fiber and its analysis with Mueller matrix[J]. Laser Technology, 2009, 33(1):15-17(in Chinese). [10] NING T G, TONG Zh, PEI L, et al. Experimental study about the modulation of fiber lasers[J]. Laser Technology, 2008, 32(1):77-79(in Chinese). [11] WANG G, LI K, KONG F M.Study of characteristics of polarization mode dispersion in single mode fibers with elliptical birefringence[J]. Laser Technology, 2006, 30(5):465-468(in Chinese). [12] XU L, YAO Sh Q.Effects of temperature on the performance of twisted optic fiber loop[J]. Laser Technology, 2005, 29(1):52-55(in Chinese). [13] ZHENG W. Automated fusion-splicing of polarization maintaining fibers[J].Journal of Lightwave Technology, 1997, 5(1):125-134. [14] WANG D Y, LIU Ch, SHU X W. Accurate a-lignment of PM fiber[J].Acta Photonica Sinica, 2002, 31(3):345-348(in Chinese). [15] WANG J E.Study on the manufacturing theory and the key techniques of fused polarization maintaining fiber couplers[D]. Changsha: National University of Defense Technology, 2007: 17-38(in Ch-inese). [16] WANG J E, LIN Zh H, WU Y L, et al. The auto-alignment technique of PM fiber of MRI[J]. Applied Optics, 2005, 26(5):37-40. [17] CHEN Sh Y.Theoretical and experimental research on azimuthal alignment method for PM-fiber based on side-viewing image[D]. Guangzhou: Ji'nan University, 2006: 37-46(in Chinese). [18] CHEN Sh Y, DI H W, CHEN Zh, et al. Azimuthal alignment method for PM fiber based on light intensity distributions with five finger profile[J].Applied Laser, 2006, 26(1):35-38(in Chinese). [19] WENG X Q, FENG D, HUANG H B, et al. Simulation of PM fibers' azimuthal alignment based on the image correlation of light intensity[J]. Acta Photonica Sinica, 2015, 44(6):0606003(in Chinese). doi: 10.3788/gzxb [20] LIU Zh H, FENG D, YANG D W, et al. Accurate detection technology for polarization axis of Panda polarization-maintaining fiber. Infrared and Laser Engineering, 2014, 43(10):3388-3393(in Chinese).