高级检索

一种基于等离子体超材料的吸波器设计

张浩, 章海锋, 杨靖, 刘佳轩

张浩, 章海锋, 杨靖, 刘佳轩. 一种基于等离子体超材料的吸波器设计[J]. 激光技术, 2018, 42(5): 704-708. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.022
引用本文: 张浩, 章海锋, 杨靖, 刘佳轩. 一种基于等离子体超材料的吸波器设计[J]. 激光技术, 2018, 42(5): 704-708. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.022
ZHANG Hao, ZHANG Haifeng, YANG Jing, LIU Jiaxuan. Design of an absorber based on plasma metameterial[J]. LASER TECHNOLOGY, 2018, 42(5): 704-708. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.022
Citation: ZHANG Hao, ZHANG Haifeng, YANG Jing, LIU Jiaxuan. Design of an absorber based on plasma metameterial[J]. LASER TECHNOLOGY, 2018, 42(5): 704-708. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.022

一种基于等离子体超材料的吸波器设计

基金项目: 

中国博士后面上资助项目 2015M581790

中国博士后特优资助项目 2016T90455

江苏省博士后面上资助项目 1501016A

国家级大学生创新训练计划基金资助项目 

详细信息
    作者简介:

    张浩(1996-), 男, 大学本科生, 现主要从事超材料吸波器电磁特性的研究

    通讯作者:

    章海锋, E-mail:hanlor@163.com

  • 中图分类号: O436;O53

Design of an absorber based on plasma metameterial

  • 摘要: 为了在TE波下获得可调谐的吸收频谱,设计了一款基于等离子体超材料的吸波器。采用全波仿真方法对该吸波器的吸收率和表面电流图进行了计算,并探讨了结构参量cv和入射角度θ对吸收率的影响。结果表明,通过激励不同的等离子体谐振区域不但可以改善其吸收特性,而且还能获得可调谐的吸收频谱;改变结构参量cv可以在实现拓展吸收带宽的同时,使得吸收频域也发生移动;改变入射角度θ的大小对吸收率的影响不大。该吸波器具有很好的角度稳定性。
    Abstract: In order to obtain tunable absorption spectra under TE wave, an absorber was designed based on plasma metamaterial. The absorption spectra and the distribution of surface current of the absorber were computed by means of full-wave simulation. The effect of structural parameters c, v and incident angle θ on absorption spectra was also discussed. The simulated results demonstrate that not only the tunable absorption spectra can be obtained in the proposed absorber but also the properties of absorption can be improved by exciting the different plasma resonance structures. Changing the structural parameters of c and v, the absorption bandwidth can be widened and its location can be tuned at same time. The incident angle θ has little effect on the absorption spectra. The proposed absorber has good angular stability.
  • Figure  1.   Structure schematic of the unit cell for the proposed absorber

    a—the front view b—the side view

    Figure  2.   Absorption spectra of the proposed absorber

    a—with ring 1 —with ring 1 and ring 2

    Figure  3.   Surface current (left) and backplane surface current (right) at different resonant frequencies

    a—9.19GHz b—9.31GHz

    Figure  4.   a—relationship between absorption spectrum and frequency at different incident angles b—relationship between frequency and incident angle

    Figure  5.   a—relationship between absorption spectrum and frequency with di-fferent c b—relationship between frequency and c c—relationship between absorption spectrum and frequency with different v d—relationship between frequency and v

  • [1]

    PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theroy and Techniques, 1999, 47(11):2075-2084. DOI: 10.1109/22.798002

    [2]

    SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simulataneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18):4184-4187. DOI: 10.1103/PhysRevLett.84.4184

    [3]

    SMITH D R, SCHURING D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J]. Physical Review Letters, 2003, 90(7):077405. DOI: 10.1103/PhysRevLett.90.077405

    [4]

    JAEYOUN K, RICHARD S, WALTER R B. Multi-peak electromagnetically induced transparency(EIT)-like transmission from bull's-eye-shaped metamateria[J]. Optics Express, 2010, 18(17):17997-18002. DOI: 10.1364/OE.18.017997

    [5]

    ALEXANDER A Z, VLADISLAV V K. Giant resonant mageto-optic Kerr effect in nanostructured ferromagnetic metamaterial[J]. Journal of Applie Physics, 2007, 102(12):123514. DOI: 10.1063/1.2822192

    [6]

    HU Y H, WEN S C, ZHUO H, et al. Focusing properties of Gaussian beams by a slab of Kerr-type lefthanded metamaterial[J]. Optics Express, 2008, 16(7):4774-4784. DOI: 10.1364/OE.16.004774

    [7]

    VESELAGO V G. The electrodynamics of substances with simulaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4):509-514. DOI: 10.1070/PU1968v010n04ABEH003699

    [8]

    SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79. DOI: 10.1126/science.1058847

    [9]

    PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969. DOI: 10.1103/PhysRevLett.85.3966

    [10]

    FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a sliver superlens[J]. Science, 2005, 308(5721):534-537. DOI: 10.1126/science.1108759

    [11]

    SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980. DOI: 10.1126/science.1133628

    [12]

    LIU Y W, WANG X H, DONG Z D, et al. Tunable electromagnetic cloaking by external field[J]. Transactions of Nanjing University of Aeronzutics & Astronautics, 2014, 31(3):241-248. http://www.cnki.com.cn/Article/CJFDTotal-NJHY201403002.htm

    [13]

    YIN Q T, YAO G, SHI S J, et al. Study on transparency structure induced by tunable teraherz plasmon. Laser Technology, 2017, 41(6):826-830(in Chinese). http://www.jgjs.net.cn/EN/abstract/abstract15674.shtml

    [14]

    LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402. DOI: 10.1103/PhysRevLett.100.207402

    [15]

    TAO H, LANDY N I, BINGHAM C M, et al. A metamaterial absorber for the terahertz regime:Design, fabrication and characterization[J]. Optics Express, 2008, 16(10):7181-7188. DOI: 10.1364/OE.16.007181

    [16]

    DAYAL G, RAMAKRISHNA S A. Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks[J]. Journal of Optics, 2013, 15(5):527-535. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48d9a130e41b9cae1b8aed3313b97dcc

    [17]

    RUFANGURA P, SABAH C. Dual-band perfect metamaterial absorber for solar cell applications[J]. Vacuum, 2015, 120(B):68-74. http://www.sciencedirect.com/science/article/pii/S0042207X15002535

    [18]

    SHAN Y, CHEN L, SHI C, et al. Ultrathin flexible dual band terahertz absorber[J]. Optics Communications, 2015, 350:63-70. DOI: 10.1016/j.optcom.2015.03.072

    [19]

    MO M M, WEN Q Y, CHEN Zh, et al. Strong and broadband terahertz absorber using SiO2-based metamaterial structure[J]. Chinese Physics, 2014, B23(4):589-592. http://www.cnki.com.cn/Article/CJFDTotal-ZGWL201404090.htm

    [20]

    MA R K, ZHANG Y Ch, FANG Y T. Broadband THz absorbers based on graphene and 1-D photonic crystal. Laser Technology, 2017, 41(5):723-727(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201705021

    [21]

    YAO G, LING F, YUE J, et al. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency[J]. IEEE Photonics Journal, 2017, 8(1):1-8. http://ieeexplore.ieee.org/document/7368074/

    [22]

    CHENG Y Zh, YANG H L, CHENG Zh Z, et al. A planar polarization-insensitive metamaterial absorber[J]. Photonics and Nanostructure-Fundamentals and Applications, 2011, 9(1):8-14. http://d.old.wanfangdata.com.cn/Periodical/wlxb201213021

    [23]

    REN Y H, DING J, GUO Ch J, et al. Design of a quad-band wide-angle microwave metamaterial absorber[J]. Journal of Electronic Materials, 2017, 46(1):370-376. DOI: 10.1007/s11664-016-4852-3

    [24]

    ZHAI H Q, ZHAN Ch H, LIU L, et al. A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability[J]. Journal of Electromagnetic Waves and Applications, 2015, 29(6):774-785. DOI: 10.1080/09205071.2015.1024335

    [25]

    LIU D, YU H T, YANG Zh, et al. Ultrathin planar broadband absorber through effective medium design[J]. Nano Research, 2016, 9(8):2354-2363. DOI: 10.1007/s12274-016-1122-x

图(5)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-12
  • 修回日期:  2017-12-24
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回