-
图 1是作者设计的等离子体材料吸波器的单元结构示意图。图 1a是正视图,图 1b是侧视图。由图 1可知,该结构单元的底层为金属铜板(电导率为σ=5.8×107S/m),中间层为介质基板,上层由被截断的等离子体环形结构和三角形金属铜片构成。介质基板为FR-4(相对介电常数εr=4.3,损耗角正切tanδ=0.025),介质基板厚度h=2.9mm,介质基板的边长l=72mm,上层贴片和底层金属铜板的厚度w=0.04mm,外层等离子体谐振环(ring 1)和内层等离子体谐振环(ring 2)的间距a=1mm,外层环的边长q=50.821mm,表示为3l/5+22x/5,其中$x = \sqrt {3a} $,内层环的边长r=43.2mm,表示为3l/5,中间三角贴片的边长s=18.6mm,表示为$\frac{{3l}}{{10}} - \sqrt {3x} $,外层环的上下谐振单元间距p=14.314mm,表示为24x/5+2c,其中c=0.2mm,内层环的上下谐振单元间距e=2mm,外层环上面谐振单元的宽度b=1.8mm,内层环上下谐振单元的宽度t=1.2mm,外层环下面的“V”型结构中左边谐振单元的宽度d=1.2mm,与内层环下面的“V”型谐振单元的间距g=1mm,外层环下面的“V”型结构中右边谐振单元的宽度u=1.2mm,与内层环下面的“V”型谐振单元的间距v=0.9mm,上层等离子体的介电常数用Drude模型来描述:
$ {\varepsilon _{\rm{p}}}\left( \omega \right) = 1 - \frac{{\omega _{\rm{p}}^2}}{{{\omega ^2} + {\rm{j}}\omega {\omega _{\rm{c}}}}} $
(1) 式中, ω表示角频率,等离子频率ωp=2.9×1015rad/s, 碰撞频率ωc=1.65×10141/s。电磁波波矢方向为沿着-z方向垂直入射,本文中提及的TE波为电场平行于y轴,磁场平行x轴。吸波器的吸收率A(ω)可以表示为:
$ A\left( \omega \right) = 1 - R\left( \omega \right) - T\left( \omega \right) $
(2) 式中, R(ω)为反射率,T(ω)为透射率。由于本文中设计的吸波器底层为金属铜板,所以透射率T(ω)=0,那么吸收率表示为:
$ A\left( \omega \right) = 1 - R\left( \omega \right) $
(3) 由(3)式可知,如果R(ω)越小,那么A(ω)的值就越大。
一种基于等离子体超材料的吸波器设计
Design of an absorber based on plasma metameterial
-
摘要: 为了在TE波下获得可调谐的吸收频谱,设计了一款基于等离子体超材料的吸波器。采用全波仿真方法对该吸波器的吸收率和表面电流图进行了计算,并探讨了结构参量c,v和入射角度θ对吸收率的影响。结果表明,通过激励不同的等离子体谐振区域不但可以改善其吸收特性,而且还能获得可调谐的吸收频谱;改变结构参量c和v可以在实现拓展吸收带宽的同时,使得吸收频域也发生移动;改变入射角度θ的大小对吸收率的影响不大。该吸波器具有很好的角度稳定性。Abstract: In order to obtain tunable absorption spectra under TE wave, an absorber was designed based on plasma metamaterial. The absorption spectra and the distribution of surface current of the absorber were computed by means of full-wave simulation. The effect of structural parameters c, v and incident angle θ on absorption spectra was also discussed. The simulated results demonstrate that not only the tunable absorption spectra can be obtained in the proposed absorber but also the properties of absorption can be improved by exciting the different plasma resonance structures. Changing the structural parameters of c and v, the absorption bandwidth can be widened and its location can be tuned at same time. The incident angle θ has little effect on the absorption spectra. The proposed absorber has good angular stability.
-
Key words:
- physical optics /
- plasma metameterial /
- absorber /
- tunable properties
-
-
[1] PENDRY J B, HOLDEN A J, ROBBINS D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theroy and Techniques, 1999, 47(11):2075-2084. doi: 10.1109/22.798002 [2] SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simulataneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18):4184-4187. doi: 10.1103/PhysRevLett.84.4184 [3] SMITH D R, SCHURING D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J]. Physical Review Letters, 2003, 90(7):077405. doi: 10.1103/PhysRevLett.90.077405 [4] JAEYOUN K, RICHARD S, WALTER R B. Multi-peak electromagnetically induced transparency(EIT)-like transmission from bull's-eye-shaped metamateria[J]. Optics Express, 2010, 18(17):17997-18002. doi: 10.1364/OE.18.017997 [5] ALEXANDER A Z, VLADISLAV V K. Giant resonant mageto-optic Kerr effect in nanostructured ferromagnetic metamaterial[J]. Journal of Applie Physics, 2007, 102(12):123514. doi: 10.1063/1.2822192 [6] HU Y H, WEN S C, ZHUO H, et al. Focusing properties of Gaussian beams by a slab of Kerr-type lefthanded metamaterial[J]. Optics Express, 2008, 16(7):4774-4784. doi: 10.1364/OE.16.004774 [7] VESELAGO V G. The electrodynamics of substances with simulaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4):509-514. doi: 10.1070/PU1968v010n04ABEH003699 [8] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514):77-79. doi: 10.1126/science.1058847 [9] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969. doi: 10.1103/PhysRevLett.85.3966 [10] FANG N, LEE H, SUN C, et al. Sub-diffraction-limited optical imaging with a sliver superlens[J]. Science, 2005, 308(5721):534-537. doi: 10.1126/science.1108759 [11] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801):977-980. doi: 10.1126/science.1133628 [12] LIU Y W, WANG X H, DONG Z D, et al. Tunable electromagnetic cloaking by external field[J]. Transactions of Nanjing University of Aeronzutics & Astronautics, 2014, 31(3):241-248. [13] YIN Q T, YAO G, SHI S J, et al. Study on transparency structure induced by tunable teraherz plasmon. Laser Technology, 2017, 41(6):826-830(in Chinese). [14] LANDY N I, SAIUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402. doi: 10.1103/PhysRevLett.100.207402 [15] TAO H, LANDY N I, BINGHAM C M, et al. A metamaterial absorber for the terahertz regime:Design, fabrication and characterization[J]. Optics Express, 2008, 16(10):7181-7188. doi: 10.1364/OE.16.007181 [16] DAYAL G, RAMAKRISHNA S A. Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks[J]. Journal of Optics, 2013, 15(5):527-535. [17] RUFANGURA P, SABAH C. Dual-band perfect metamaterial absorber for solar cell applications[J]. Vacuum, 2015, 120(B):68-74. [18] SHAN Y, CHEN L, SHI C, et al. Ultrathin flexible dual band terahertz absorber[J]. Optics Communications, 2015, 350:63-70. doi: 10.1016/j.optcom.2015.03.072 [19] MO M M, WEN Q Y, CHEN Zh, et al. Strong and broadband terahertz absorber using SiO2-based metamaterial structure[J]. Chinese Physics, 2014, B23(4):589-592. [20] MA R K, ZHANG Y Ch, FANG Y T. Broadband THz absorbers based on graphene and 1-D photonic crystal. Laser Technology, 2017, 41(5):723-727(in Chinese). [21] YAO G, LING F, YUE J, et al. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency[J]. IEEE Photonics Journal, 2017, 8(1):1-8. [22] CHENG Y Zh, YANG H L, CHENG Zh Z, et al. A planar polarization-insensitive metamaterial absorber[J]. Photonics and Nanostructure-Fundamentals and Applications, 2011, 9(1):8-14. [23] REN Y H, DING J, GUO Ch J, et al. Design of a quad-band wide-angle microwave metamaterial absorber[J]. Journal of Electronic Materials, 2017, 46(1):370-376. doi: 10.1007/s11664-016-4852-3 [24] ZHAI H Q, ZHAN Ch H, LIU L, et al. A new tunable dual-band metamaterial absorber with wide-angle TE and TM polarization stability[J]. Journal of Electromagnetic Waves and Applications, 2015, 29(6):774-785. doi: 10.1080/09205071.2015.1024335 [25] LIU D, YU H T, YANG Zh, et al. Ultrathin planar broadband absorber through effective medium design[J]. Nano Research, 2016, 9(8):2354-2363. doi: 10.1007/s12274-016-1122-x