-
基于DWDM光网络的光传送网方案如图 1所示。各类波长不同的激光二极管(laser diode, LD)光信号先从左侧密集波分复用器DWDM进入,再经光纤继续传输。在理想单模光纤条件下,这两个正交偏振模将具有相同的传播性能,不会产生偏振模色散现象。但在实际情况下,光纤传输系统中的单模光纤的纤芯因制备工艺条件限制并不能达到完全的理想圆对称状态,同时掺杂浓度也存在不均匀的分布现象,从而使光传输信号在不同的偏振方向上存在折射率差异。由于受偏振模色散作用,解复用器DWDM实际接收到的光信号将发生显著展宽,引起偏振模色散从而使光载波及其边带传输速率存在差异,随着系统中的偏振模色散程度不断增加,光信号性能也持续下降,从而严重影响到光传送网的整体通信能力。
为了有效处理光传送网的光纤衰减问题,可以采取将掺铒光放大器加入到链路中的方法以增强光信号的功率,并在此基础上,将光环形器设置在EDFA的前部以形成偏振控制系统,该系统由一面反射镜与一个法拉第镜圆筒共同构成,并满足如下所示的琼斯矩阵[14]:
$ \mathit{\boldsymbol{M}}\left( \theta \right) = r\left[ {\begin{array}{*{20}{c}} 0&{ - 1}\\ { - 1}&0 \end{array}} \right] $
(1) 式中,r代表光信号的损耗系数。
图 2显示了光环形器的传送网模型。各个具有不同波长的光信号从左侧密集波分复用器DWDM进入, 再经光纤完成传输过程。当光信号受到偏振模色散的作用后将进入到光环形器内,输出信号对应的偏振方向将转动π/2,这时原先具有较快速率的偏振光信号将进入较慢速率的偏振方向中,而原先速度较慢的偏振光信号将进入到较快速率的偏振方向中,以此降低了系统的展宽程度,减小偏振模色散引起的光传送网传输误比特率。
基于光环形器的光传送网通信偏振模色散抑制
Study on polarization mode dispersion suppression in optical transmission network based on optical circulators
-
摘要: 为了降低光传送网传输过程中产生的偏振模色散对传输信号质量的影响,采用将光环形器置于光传送网光放大器前端的方法,对光传送网通信传输中的偏振模色散效果进行了仿真。经过偏振模色散抑制后,传输眼图具有更加明显的张开状态,系统的传输性能有一定的提高,在一定程度上抑制了光传送网中存在的偏振模色散,有效改善了信号的质量。结果表明,从添加光环形器前后补偿偏振模色散的误比特率计算结果发现,误比特率的效率提高了约1倍,光环形器对光传送网通信的偏振模色散现象具有显著的抑制效果。该方案对不同传输速度的偏振态光信号延迟进行等效补偿,最终实现补偿偏振模色散的效果。Abstract: In order to reduce influence of polarization mode dispersion(PMD) on the quality of transmission signal, an optical circulator was applied in the front-end of the optical amplifier of the optical transmission network. The effect of PMD in optical transmission network was simulated. After PMD suppression, transmission eye diagram opened more obviously. Transmission performance of the system was improved to a certain extent.The PMD in the optical transmission network was suppressed to a certain extent, and the quality of signal was effectively improved. The results show that the bit error rate of PMD decreases about one time with and without the optical circulator. The optical circulator has a significant inhibitory effect on PMD in the optical transport network. The polarization delay at different transmission speeds is compensated equivalently with this scheme so that the PMD is compensated finally.
-
[1] GUAN A H, SHUN J Q. Impact of OXC architecture on the accumulation of intraband crosstalk in WDM optical networks[J]. Laser Technology, 2006, 30(6):653-656(in Chinese). [2] ELMIRGHANI L N H, MOUFTAH H T. All-optical wavelength conversion:technologies and applications in DWDM networks[J]. IEEE Communications Magazine, 2000, 38(3):86-92. doi: 10.1109/35.825645 [3] LAUDE J P. DWDM fundamentals, components, and applications[M].Norwood, MA, USA:Artech House, 2006:22-28. [4] ZHEN H L. Polarization filters based on high birefringence photonic crystal fiber filled with Au[J]. Laser Technology, 2016, 40(1):1-4(in Chinese). [5] GUAN A H, ZHANG Q H, FU H L. Experimental study of four-wave miring influence in WDM optical networks[J]. Laser Technology, 2009, 33(1):5-7(in Chinese). [6] CHOI I, ZHOU Y R, DYNES J F, et al. Field trial of a quantum secured 10Gb/s DWDM transmission system over a single installed fiber[J]. Optics Express, 2014, 22(19):23121-23128. doi: 10.1364/OE.22.023121 [7] AN H Y, LIU D W, GENG R H, et al. Polarization control based on FPGA in quantum communication systems[J]. Systems Engineering and Electronics, 2016, 38(8):1917-1921(in Chinese). [8] ITO H, KODAMA S, MURAMOTO Y, et al. High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10(4):709-727. doi: 10.1109/JSTQE.2004.833883 [9] HUANG Y, HERITAGE J P, MUKHERJEE B. Connection provision-ing with transmission impairment consideration in optical WDM networks with high-speed channels[J]. Journal of Lightwave Technology, 2005, 23(3):982-993. doi: 10.1109/JLT.2005.843520 [10] HODZIE A, KONRAD B, PETERMANN K. Alternative modulation formats in nx 40Gb/s WDM standard fiber RZ-transmission systems[J]. Journal of Lightwave Technology, 2002, 20(4):598-604. doi: 10.1109/50.996579 [11] SUNNERUD H, XIE C, KARLSSON M, et al. A comparison between different PMD compensation techniques[J]. Journal of Lightwave Technology, 2002, 20(3):368-372. doi: 10.1109/50.988985 [12] GRANT P D, LAFRAMBOISE S R, DUDEK R, et al. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector[J]. Electronics Letters, 2009, 45(18):952-954. doi: 10.1049/el.2009.1586 [13] LEFRANCOIS S, FU D, HOLTOM G R, et al. Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 2012, 37(10):1652-1654. doi: 10.1364/OL.37.001652 [14] SHUN J H, MA T Y, WANG X B, et al. Experimental study on polarization shift compensation for single photon[J]. Acta Photonica Sinica, 2009, 38(3):528-531(in Chinese). [15] XU Zh G, JIANG L. Analysis of noise suppression in the channel of laser communication system[J]. Laser Journal, 2017, 38(8):197-199(in Chinese). [16] LUO J W, LI Y X, MENG W, et al. A quantum secure communication system based on wavelength -mode double multiplexing[J]. Acta Photonica Sinica, 2017, 37(9):927001(in Chinese). [17] JIANG L, WANG Ch, AN Y, et al. Analysis of transmission cha-racteristics of Kurdish type polarization laser communication terminal[J]. Laser & Optoelectronics Progress, 2016, 53(11):110603(in Chinese). [18] WANG Y, LI Y, MA J, et al. Study on the performance of coherent circular polarization modulation system in free space optical communication[J].Infrared and Laser Engineering, 2016, 45(8):822004(in Chinese). doi: 10.3788/IRLA [19] YANG Y F, YAN Ch X, HU Ch H, et al. Study of polarization aberration in optical system of coherent laser communication[J]. Acta Photonica Sinica, 2016, 36(11):1106003(in Chinese).