-
超表面实质就是利用带有亚波长分离和空间变化的几何参量的阵列来形成一个随着空间变化的光学响应,以此塑造光的波阵面。根据惠更斯原理,界面上每一个点创建一个球面波,波的干扰形成了新的波阵面[11]。为研究超表面中反射和折射的现象,引入广义反射折射定律[12]。
如图 1所示,从A点出发的光线, 经过界面处不同位置C和D到达B点, 可以获得相同相移,即光线经ACB和ADB两种路径的相移量相同,表示为[13]:
$ {k_0}{n_{\rm{i}}}\sin {\theta _{\rm{i}}}{\rm{d}}x + \left( {\mathit{\Phi } + {\rm{d}}\mathit{\Phi }} \right) = {k_0}{n_{\rm{t}}}\sin {\theta _{\rm{t}}}{\rm{d}}x + \mathit{\Phi } $
(1) 式中,k0=2π/λ0, λ0是真空中的波长,θt是折射角;Φ, dΦ分别是两种路径通过界面产生的不连续相位;dx是两点的距离差;ni和nt分别是两个界面的折射率;相位突变量的梯度表示为dΦ/dx,得到广义折射定律:
$ {n_{\rm{t}}}\sin {\theta _{\rm{t}}} - {n_{\rm{i}}}\sin {\theta _{\rm{i}}} = \frac{{{\lambda _0}{\rm{d}}\mathit{\Phi }}}{{2{\rm{ \mathit{ π} d}}x}} $
(2) 同样可以得到广义反射定理[14]:
$ \sin {\theta _{\rm{r}}} - \sin {\theta _{\rm{i}}} = \frac{{{\lambda _0}}}{{2{\rm{ \mathit{ π} }}{n_{\rm{i}}}}}\frac{{{\rm{d}}\mathit{\Phi }}}{{{\rm{d}}x}} $
(3) 在ni和nt界面上的相位突变量Φ,在x方向以一定梯度分布,即在界面存在相位突变梯度,即dΦ/dx[15]。根据沿界面的波矢的概念,此处折射和反射光束中的波矢等于相位梯度。
通过调控电磁波通过介质的传输过程中产生的光程差,可以来产生所需电磁波的波前。设此介质折射率为n,当波长为λ0的电磁波在该均匀介质中传输一定的距离d,则此光束积累的传输过程中产生的相位是:
$ \mathit{\Phi } = n{k_0}d $
(4) 对于传统的相位型光学元件,为获得所需波前,通常是利用厚度d随空间变化的特点,采取曲面面型来得到相位的调节,但足够的相位差一般需要d变化较大。根据广义折射与反射定律, 可以在厚度不变的情况下,通过改变超表面的结构,来调节等效折射率n。以下使用SiO2基底上的椭圆硅柱阵列结构,通过改变单元结构中的比例,如调整线宽使得排列介质的占空比改变,从而实现传输相位的调节。
基于超表面的宽波带光束聚焦研究
Study on focusing of wideband beam based on metasurface
-
摘要: 超颖表面是一种基于亚波长结构的光学平板膜层,可在亚波长传输范围内调控入射光束的相位、振幅和偏振。为了代替传统的曲面光学元件,采用传输相位调控理论和广义折反射定律,设计了一种新型的超颖表面,并进行了程序模拟,取得了此亚波长结构对光束聚焦调控的数据。结果表明,当增加超颖表面的椭圆基元的长短轴长度时,材料的等效折射率增加,并且适用的波长范围增加到0.7μm~1.2μm;通过优化超表面结构参量,可实现在宽波带范围内的相位调控,进而获得聚焦光场的优化,在一定程度上可以代替传统光学元件实现光学聚焦。该研究结果在超分辨率成像及光刻等方面有一定参考价值,在一些特殊的需要亚波长结构调控光束的情况下可以使光路简单化,并且比传统的光学元件有着厚度方面的优势。Abstract: Meta-surface is optical flat film based on sub-wavelength structure, which can regulate phase, amplitude and polarization of incident beam in sub-wavelength range. In order to replace the traditional surface optical elements, one new type of mata-surface was designed by using the transmission phase regulation theory and the generalized reflection law. Program simulation was carried out and the data of beam focused and regulated by the sub-wavelength structure were obtained. The results show that, when the length of long and short axis of elliptical element of mata-surface is longer, equivalent refractive index of material increases at the same time and the applicable wavelength range increases to 0.7μm~1.2μm. By optimizing the mata-surface structure parameters, phase regulation within wide wave band can be realized, and the optimization of the focused light field can be obtained. To a certain extent, it can replace traditional optical elements to realize optical focusing. The results have some reference value in super-resolution imaging and photolithography. It can simplify the optical path in some special demands that sub-wavelength structure can regulate the beams. Compared with the traditional optical elements, mata-surface has the advantages of thickness.
-
-
[1] EVLYUKHIN A B, REINHARDT C, SEIDEL A, et al. Optical response features of Si-nanoparticle arrays[J]. Physical Review, 2010, B82(4):045404. [2] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685):788-792. doi: 10.1126/science.1096796 [3] JAHANI S, JACOB Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1):23-36. doi: 10.1038/nnano.2015.304 [4] YU N, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2):139-150. doi: 10.1038/nmat3839 [5] MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics:independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11):113901. doi: 10.1103/PhysRevLett.118.113901 [6] DIAO J, YUAN W, YU Y, et al. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Optics Express, 2016, 24(3):1924-1933. doi: 10.1364/OE.24.001924 [7] JIANG X X, WANG J M, HUANG X, et al. Complex amplitude pupil filter based on metasurface with subwavelength slot antenna[J]. Laser Technology, 2017, 41(6):807-811(in Chinese). [8] LAROUCHE S, SMITH D R. Reconciliation of generalized refraction with diffraction theory[J]. Optics Letters, 2012, 37(12):2391-2393. doi: 10.1364/OL.37.002391 [9] KAMALI S M, ARBABI A, ARBABI E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7(5):11618. [10] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths:Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194. doi: 10.1126/science.aaf6644 [11] YU N, CAPASSO F. Optical metasurfaces and prospect of their applications including fiber optics[J]. Journal of Lightwave Technology, 2015, 33(12):2344-2358. doi: 10.1109/JLT.2015.2404860 [12] PU M, LI X, MA X, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9):e1500396. doi: 10.1126/sciadv.1500396 [13] SUN Y Y, HAN L, SHI X Y, et al. General laws of reflection and refraction for metasurface with phase discontinuity[J]. Acta Physica Sinica, 2013, 62(10):104201(in Chinese). [14] YU N, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337. doi: 10.1126/science.1210713 [15] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125):1232009. doi: 10.1126/science.1232009 [16] SPINELLI P, VERSCHUUREN M A, POLMAN A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators[J]. Nature Communications, 2012, 3(2):692. [17] ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays.[J]. Nature Communications, 2015, 6(5):7069. [18] DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens' surfaces[J]. Advanced Optical Materials, 2015, 3(6):813-820. doi: 10.1002/adom.v3.6 [19] LIN D, FAN P, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194):298-302. doi: 10.1126/science.1253213 [20] ARBABI E, ARBABI A, KAMALI S M, et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules[J]. Optica, 2016, 3(6):628-633. doi: 10.1364/OPTICA.3.000628 [21] OSKOOI A F, ROUNDY D, IBANESCU M, et al. Meep:A flexible free-software package for electromagnetic simulations by the FDTD method[J]. Computer Physics Communications, 2010, 181(3):687-702. doi: 10.1016/j.cpc.2009.11.008