-
VCSEL发出的光垂直于芯片表面,正是基于这一特性,使得VCSEL易于2维集成形成阵列。同时VCSEL腔长极短使其纵模间距大[5],所以容易得到单纵模输出。VCSEL具有小的谐振腔体积,其自发辐射因子远远高于边发射激光器,能够达到极低阈值条件下激射,极大地降低了器件的功耗和热能耗,延长了器件的使用寿命。从工艺上来讲,VCSEL制作工艺与平面硅工艺完全兼容,方便与其他电子器件实现光电子集成[6]。可调谐激光器最初是通过改变层厚进行调谐,由于调谐范围非常窄,便在激光器的制作过程中引入了空气隙这一概念,利用空气隙厚度的变化使VCSEL的有效腔长发生改变。
垂直腔面发射激光器的谐振腔是一种Fabry-Pérot(F-P)结构。激光器工作状态下谐振腔中会产生多种光波,但是只有满足驻波条件的光波才可在腔内形成有效振荡,光子在谐振腔中往返光程的相位差是2π的整数倍,即4πnL/λ=2mπ,所以这里谐振条件可表示为:
$ L = \frac{{m\lambda }}{{2n}}{\rm{ }} $
(1) 式中,L为等效腔长,n为等效折射率,m为整数,λ为谐振波长。从(1)式可以看出,若要使谐振波长发生变化,可以改变激光器的等效腔长或等效折射率。静电调谐、压电调谐和电热调谐等调谐方法都是使悬臂梁或微机电系统(micro-electro-mechanical system, MEMS)结构上下移动,从而改变空气隙大小,使等效腔长发生改变。由(1)式可知,等效腔长变化,波长也随之改变。
图 1所示是MEMS可调谐VCSEL的结构示意图。它由上下两对掺杂类型不同的分布式布喇格反射镜(distributed Bragg reflector, DBR)反射镜组成。上DBR是可以移动的,下DBR固定并与衬底相连。空气隙和有源区位于上下DBR之间。在有源区两侧加电压可形成电流,产生受激辐射。空气层两端加电压后,在静电力的作用下,P型DBR可上下移动,改变谐振腔的长度。下式是中心波长与各个参量的变化关系:
$ \frac{{\Delta \lambda }}{\lambda } = \frac{{r\Delta L}}{{{L_{{\rm{eff}}}}}}{\rm{ }}{\rm{ }} $
(2) 式中,r表示F-P腔的光学常数,Leff是有效腔长,ΔL表示谐振腔的改变量。这是一种在静电激励下的调谐方法,把静电激励改为热电调谐也可产生同样的效果。即上DBR由于电流的注入所产生的热量而发生形变,导致空气层厚度的变化。由(1)式可知,将空气隙换成其它材料,保持这种材料的厚度不变,改变折射率也可以使波长发生改变。向列相液晶[7]在3V~10V的调谐电压下,可以改变液晶的折射率,在可调谐VCSEL中是一种非常理想的调谐材料。
可调谐VCSEL主要由可移动上DBR、可变空气隙、有源区和下DBR构成,这是一种标准的F-P谐振腔结构[8]。将折射率不同、厚度为光波长1/4的光介质层叠起来可构成DBR反射镜。反射率越高则需要这两种介质的折射率差越大。为了满足激射条件,DBR反射镜需要具有较大的反射率。介质可有较大的折射率差,而且吸收很少,所以DBR反射镜只需增加多层膜的层数即可提高反射率。半导体材料的DBR反射镜相比于绝缘材料的DBR反射镜其不同介质之间的折射率差并不是很大,因此为了得到高的反射率需要多个介质薄膜对,一组半导体DBR反射镜通常由20对~40对介质薄膜组成。一般的VCSEL结构可分为上、中、下3个部分,几十纳米厚的量子阱发光区位于上下DBR反射镜之间,有源区发出的光在上下DBR之间来回震荡,经过多次放大后满足激射条件的光由顶部出射。图 2是可调谐VCSEL的结构示意图。该结构主要由三部分组成:可移动上DBR反射镜、有源区和底部N型DBR反射镜。底部N型DBR是由多对半导体材料组成,可移动上DBR包括P型DBR、可变空气隙和N型DBR。电压加在P型DBR和底部N型DBR上可使激光器发生激射,在顶部N型DBR和P型DBR上加反向偏压可以改变空气层的厚度,调谐波长大小。
静电调谐、压电调谐和电热调谐这3种调谐方式下的可调谐VCSEL主要由半VCSEL和MEMS结构组成。静电调谐方式最初采用的是单悬臂梁结构,为了提高MEMS在调谐过程中的稳定性,单悬臂梁结构逐渐演变为双悬臂梁结构、四悬臂梁结构。图 3是四悬臂结构的静电可调谐VCSEL[9]。电极通电后四悬臂梁MEMS结构在静电力的作用下发生弯曲变形,改变了谐振腔的长度。
在微机械压电激励可调谐VCSEL中,基本结构是34对N型下DBR反射镜,GaAs量子阱有源区层,可移动的上DBR反射镜。上DBR反射镜又可为3部分:4对P型DBR,可变化的空气隙,15对由悬臂梁结构支撑的N型DBR。上DBR是P-I-N型结构,由掺杂类型不同的AlxGa1-xAs材料构成。如图 4所示,当施加反向电压时,垂直方向上的电场就会穿过Ⅰ型压电层使其弯曲变形。悬臂梁的偏移就会改变空气隙的大小,达到波长调谐的目的[10]。图中, ε为纵向应变,Mp为等效弯曲力矩,δ为偏移量,V为电压。
如图 5所示是电热方式可调谐VCSEL的结构[11],它的悬臂梁结构与以上两种调谐方式的不同。该悬臂梁由热层电极、SiO2、N型掺杂层即热层和AlGaAs DBR构成。由于AlGaAs DBR的热膨胀系数约是SiO2的10倍,热层电极加调谐电压引起的温度变化会使悬臂梁发生形变,最终引起腔长的改变。
2011年,CASTANY等人制备出如图 6所示的内腔液晶VCSEL结构。该结构是通过改变液晶的折射率实现波长调谐。上DBR为SiO2/TiO2介质薄膜,下DBR采用Si/SiNx介质薄膜。器件的有源结构通过分子束外延(molecular beam eritaxy, MBE)在InP晶体上生长,由3个8nm厚的InGaAs量子阱构成。器件采用光抽运激励,施加电压小于3V,在1500nm通信波段实现了超过30nm的调谐[12]。
可调谐垂直腔面发射激光器
Tunable vertical cavity surface emitting lasers
-
摘要: 近年来国内外在可调谐垂直腔面发射激光器这一研究领域取得了极大的进步。叙述了可调谐垂直腔面发射激光器的结构原理和发展历程,对不同结构的优缺点作了对比介绍,展望了可调谐激光器的发展前景。这种器件在光传输、光互连及光并行信息处理等方面有着良好的应用前景。Abstract: In recent years, great progress has been made in the field of tunable vertical cavity surface emitting lasers. The vertical cavity surface emitting laser is perpendicular to the substrate, and this novel structure has the advantages, such as small optical divergence angle, being suitable for integration with other optoelectronic devices, and testing in chip. Simulation method was used to simulate wavelength tunable vertical cavity surface-emitting lasers with micro-mechanical structure. The structure, principle and development history of tunable vertical cavity surface emitting lasers were described. The advantages and disadvantages of different structures were introduced. The development prospects of tunable lasers were also discussed. Wavelength tunable lasers of light source can make network construction cost lower. Large range tunable lasers without mode hop can be used for high-resolution laser spectroscopy and laser ranging. This kind of device has good application prospects in optical transmission, optical interconnection and optical parallel information processing.
-
Key words:
- lasers /
- tunable semiconductor laser /
- optical path of resonator /
- surface emitting
-
[1] GRAWAL P A, DUTTA N K. Semiconductor lasers[M].New York, USA:Van Nostrand Reinhold, 1994:426. [2] IGA K. Vertical-cavity surface-emitting laser:Its conception and evolution[J]. Japanese Journal of Applied Physics, 2008, 47(1):1-10. doi: 10.1143/JJAP.47.1 [3] GUO T H, WANG Y F, YU G L.Selection and analysis of theoretical model of fiber Bragg grating external cavity laser diode[J]. Laser Technology, 2017, 41(2):225-230(in Chinese). [4] CHANG-HASNAIN C J, HARBISON J P, ZAH C E, et al. Continuous wavelength tuning of two-electrode vertical cavity surface emitting lasers[J]. Electronics Letters, 1991, 27(11):1002-1003. doi: 10.1049/el:19910624 [5] DU B X. The theory of the semiconductor lasers[M].Beijing:Publishing Company of Weapon Industry, 2001:193(in Chinese). [6] HAGLUND E P, KUMARI S, WESTBERGH P, et al. Dynamic properties of silicon-integrated short-wavelength hybrid-cavity VCSEL[J]. Proceedings of the SPIE, 2016, 9766:976607. doi: 10.1117/12.2207301 [7] PANAJOTOV K, XIE Y, BEECKMAN J, et al. Hybrid VCSEL-liquid crystal systems[J]. Proceedings of the SPIE, 2015, 9381:93810P. doi: 10.1117/12.2079032 [8] HU J B, LI M P. Design of novel tunable semiconductor lasers in optical fiber communication systems[J]. Laser Technology, 2016, 40(2):280-283(in Chinese). [9] JAYARAMAN V, COLE G D, ROBERTSON M, et al. High-sweep-rate 1310nm MEMS-VCSEL with 150nm continuous tuning range[J]. Electronics Letters, 2012, 48(14):867-869. doi: 10.1049/el.2012.1552 [10] HUANG M C Y, CHENG K B, ZHOU Y, et al. Monolithic Integrated Piezoelectric MEMS-Tunable VCSEL[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(2):374-380. doi: 10.1109/JSTQE.2007.894056 [11] NAKAHAMA M, SANO H, NAKATA N, et al. Electro-thermal tuning of MEMS VCSEL with giant wavelength-temperature dependence[J]. IEICE Electronics Express, 2012, 9(5):416-421. doi: 10.1587/elex.9.416 [12] CASTANY O, DUPONT L, SHUAIB A, et al.Tunable semiconductor vertical-cavity surface-emitting laser with an intracavity liquid crystal layer[J].Applied Physics Letters, 2011, 98(16):161105. doi: 10.1063/1.3569591 [13] VAIL E C, LI G S, YUEN W, et al. High performance micromechanical tunable vertical cavity surface emitting lasers[J]. Electronics Letters, 1996, 32(20):1888-1889. doi: 10.1049/el:19961232 [14] LI M Y, YUEN W, LI G S, et al. High performance continuously tunable top-emitting vertical cavity laser with 20nm wavelength range[J]. Electronics Letters, 1997, 33(21):1051-1052. [15] CHANG-HASNAIN C J. Tunable VCSEL[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6):978-987. doi: 10.1109/2944.902146 [16] LI M Y, YUEN W, LI G S, et al. Top-emitting micromechanical VCSEL with a 31.6nm tuning range[J]. IEEE Photonics Technolo-gy Letters, 1998, 10(1):18-20. doi: 10.1109/68.651087 [17] HUANG M C Y, CHENG K B, ZHOU Y, et al. Demonstration of piezoelectric actuated gaas-based MEMS tunable VCSEL[J]. IEEE Photonics Technology Letters, 2006, 18(10):1197-1199. doi: 10.1109/LPT.2006.873923 [18] SUGIHWO F, LARSON M C, HARRIS J S. Low threshold continuously tunable vertical-cavitysurface-emitting lasers with 19.1nm wavelength range[J]. Applied Physics Letters, 1997, 70(5):547-549. doi: 10.1063/1.119264 [19] GUAN B L, ZHANG J L, REN X J, et al. Micro-nano-optical machine system tunable wavelength vertical cavity surface emitting lasers with wide tunable range[J]. Acta Physica Sinica, 2011, 60(3):262-265(in Chinese). [20] TAYEBATI P, WANG P D, VAKHSHOORI D, et al. Half-symmetric cavity tunable microelectro echanical VCSEL with single spatial mode[J].IEEE Photonics Technology Letters, 1998, 10(12):1679-1681. doi: 10.1109/68.730467 [21] RIEMENSCHNEIDERA F, SAGNESB I, BOHM G, et al. A new concept for tunable long wavelength VCSEL[J]. Optics Communications, 2003, 222(1/6):341-350. [22] RIEMENSCHNEIDER F, MAUTE M, HALBRITTER H, et al. Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range[J]. IEEE Photonics Technology Letters, 2004, 16(10):2212-2214. doi: 10.1109/LPT.2004.833885 [23] GIERL C, GRUENDL T, DEBERNARDI P, et al. Surface micromachined tunable 1.55μm-VCSEL with 102nm continuous single-mode tuning[J]. Optics Express, 2011, 19(18):17336-17343. doi: 10.1364/OE.19.017336 [24] LEVALLOIS C, CAILLAUD B. Nano-polymer-dispersed liquid crystal as phase modulator for a tunable vertical-cavity surface-emitting laser at 1.55μm[J]. Applied Optics, 2006, 45(33):8484-8490. doi: 10.1364/AO.45.008484 [25] LEVALLOIS C, CAILLAUD B, DUPONT L, et al. Long-wavelength vertical-cavity surface-emitting laser using an electro-optic index modulator with 10nm tuning range[J]. Appllied Physics Letters, 2006, 89(1):011102. doi: 10.1063/1.2219144 [26] WILKINSON C I, WOOD HEAD J, FROST J E F, et al. Electrical polarization control of vertical-cavity surface emitting lasers using polarized feedback and a liquid crystal[J]. IEEE Photonic Technology Letters, 2002, 11(2):155-157. [27] XIE Y, BEECKMAN J, WOESTENBORGHS W, et al.VCSEL with photo-aligned liquid crystal overlay[J]. IEEE Photonics Technology Letters, 2012, 24(17):1509-1512. doi: 10.1109/LPT.2012.2207431 [28] XIE Y, BEECKMAN J, PANAJOTOV K, et al. Vertical-cavity surface-emitting laser with a chiral nematic liquid crystal overlay[J]. IEEE Photonics Journal, 2014, 6(1):1-10. [29] BELMONTE C, FRASUNKIEWICZ L, CZYSZANOWSKI T, et al. Optimization of electrically tunable VCSEL with intracavity nematic liquid crystal[J]. Optics Express, 2015, 23(12):15706. doi: 10.1364/OE.23.015706 [30] WANG H X, CHEN J D, CHANG T Y, et al. Research of modulation characteristics of distributed feedback laser[J]. Laser Technology, 2017, 41(6):836-840(in Chinese).