-
研究表明,具有周期性分布的金属纳米结构在特定激发条件下可以产生表面等离极化激元(surface plasmon polariton, SPP)在衬底表面形成局域增强电场[1],该局域场能够有效调控位于金属衬底表面附近的荧光分子的电子跃迁行为,从而获得调控荧光信号的效果,如图 1所示。因此,为得到良好的荧光增强效果,制备周期性分布的金属衬底是一种有效的手段。具有周期性结构的金属衬底可通过光刻法、模板法、胶体刻蚀法等来制备,可以获得大小、形貌和间距等精准控制金属纳米结构,如:金/银纳米孔阵列[17-19]、金/银纳米光栅[20-22]、纳米柱阵列[23-25]、有序纳米颗粒阵列[26-32]等一系列具有周期性结构的衬底都表现出良好的荧光增强效果,如图 2所示。
如上所述,周期性分布的衬底金属在特定激发条件下能够有效产生SPP。因此,纳米光栅所具有的周期构型为获得高效等离激元共振耦合提供了有效途径,下式用于描述入射光波与金属纳米光栅之间共振耦合条件[33]:
$ \begin{array}{c} {K_{{\rm{SPP}}}} = \frac{\omega }{c} \sqrt {\frac{{{\varepsilon _{\rm{m}}}{\varepsilon _{\rm{d}}}}}{{{\varepsilon _{\rm{m}}} + {\varepsilon _{\rm{d}}}}}} = \frac{\omega }{c}{\rm{sin}}\theta \pm m\frac{{2{\rm{ \mathit{ π} }}}}{\mathit{\Lambda }}, \\ (m = \pm 1, 2, 3, \ldots ) \end{array} $
(1) 式中,c为光速,ω表示入射光频率,εm和εd分别是金属和与金属表面接触的介电材料的介电常数,θ是光入射角,Λ是光栅常数,m取整数。在合适的θ和Λ条件下,金属纳米光栅通过耦合方式能够有效激发产生SPP,在金属衬底表面产生形成强的局域场分布。SUN教授[22]课题组通过研究具有不同周期长度的银材质正弦型光栅衬底对探针分子的荧光调控规律,发现在532nm光激发下,罗丹明6G分子的荧光辐射提高了30倍,且实验发现周期较长的金属纳米光栅增强荧光效果并不明显,这主要是因为长周期光栅的SPP共振耦合效率较低所致。因此,银光栅所具有的的表面等离耦合发射效应强烈依赖于光栅周期性,且随着周期增加,SPP共振耦合效率降低[34]。
对于周期性分布的金属纳米孔阵列,在外加电磁场激励下,其表面等离共振(surface plasmon resonance, SPR)波长与衬底的周期长度、材料的电介质常数之间满足下式[35]:
$ {\lambda _{{\rm{SPR}}}}(i, j) = p{\left( {{i^2} + {j^2}} \right)^{1/2}}{\left( {\frac{{{\varepsilon _{\rm{m}}}{\varepsilon _{\rm{d}}}}}{{{\varepsilon _{\rm{m}}} + {\varepsilon _{\rm{d}}}}}} \right)^{1/2}} $
(2) 式中,λSPR表示SPR波长,p为衬底金属阵列的周期公式,i和j是定义阵列散射阶数的整数。(2)式表明,金属纳米孔阵列产生的表面等离共振效应与纳米孔阵列的周期性分布有关[36],纳米孔阵列具有适当的周期性可以产生较强的局域场分布。因此,金属纳米孔阵列衬底也广泛用于表面增强光谱方面研究。BROLO等人通过聚焦离子束刻蚀技术制备出不同周期分布的纳米孔阵列衬底,并对沉积在衬底表面噁嗪720荧光分子的荧光辐射行为进行了研究,发现荧光增强效应与孔阵列周期长度有关[17]。当纳米孔阵列周期为553nm时,得到了83倍增强因子。研究人员基于SPR共振模型对表面增强荧光效应进行了分析和讨论。XIAO课题组利用聚离子束刻蚀出银纳米孔周期阵列衬底并沉积了厚度为30nm的二氧化硅介质层充当隔离层[37]。实验发现,当纳米孔阵列周期长度和孔径分别为550nm, 100nm时获得11倍的荧光增强效果。研究人员基于反射模式下的银纳米孔阵列产生的SPP共振效应对该实验现象做了解释说明。WANG等人通过纳米压印光刻技术制备金纳米孔阵列,研究了激发光入射角对荧光增强因子的影响[38]。与传统的连续金纳米薄膜相比,周期分布的纳米孔衬底表面荧光分子的增强因子可达14倍左右,且可将生物抗原的检测性提高至3倍,所得结果为医疗传感与检测提供衬底支撑。
相对于光刻、聚离子束技术而言,模板法具有廉价且操作方便等优点。利用多孔阳极氧铝(anodic aluminum oxide, AAO)模板制备出具有周期性分布的金属纳米阵列衬底在表面增强光谱学方面有较为广泛的应用,并且该模板常被用作纳米和光电技术等方面的研究[39]。ZHENG教授课题组采用氧化还原方法,在AAO模板中制备出“AAO/银纳米颗粒(Ag nanoparticle, AgNP)”复合结构衬底[40]。在532nm连续激光的激发下,罗丹明6G荧光分子的增强倍数可达6倍。并基于局域场增强理论对纳米复合体系中的荧光增强效应进行了分析和讨论。DAMM等人通过电化学沉积、退火、刻蚀等步骤,在AAO模板上制备出金纳米棒周期阵列,实验中可同时观察到罗丹明6G分子的荧光增强和喇曼增强现象,通过模拟计算和分析,他们认为AAO厚度是其主要影响因素[41]。
具有周期性构型的金属纳米结构衬底在特定外光场激发下可以形成SPP,且该衬底的形貌相对均匀有序。因此,周期性金属纳米结构为制备大面积、高均匀性金属衬底增强荧光提供了很好的衬底支持[42-43]。
-
在早期关于增强光谱效应研究中,通常采用电化学抛光或物理抛光方法来制备金属纳米结构衬底。虽上述方法所制备衬底存在重复性差等不足,但作为一种传统的增强衬底制备方法,具有制备工艺简单,且能得到具有微纳结构形貌的金属衬底,在表面增强荧光效应研究中具有重要的研究价值[44-45]。常见的贵金属溶胶颗粒衬底有球形金、银纳米颗粒;金、银纳米棒;金纳米星,银纳米三角片以及纳米颗粒的核壳等,如图 3所示。研究表明,金属纳米颗粒在特定激发条件下会产生局域表面等离激元共振[1](localized surface plasmon resonance, LSPR),其周围形成较强的局域电场,如图 4所示。在局域电场的作用下,荧光物种中处于高能态的自由电子数目增多并且其跃迁频率加快,荧光分子的自发辐射得到增强。
1982年,WEITZ[51]等人用制备出银岛膜(silver is-land film, SiF)作为衬底,研究Eu3+离子的荧光辐射特性。实验发现,在激光脉冲的作用下,利用SIF薄膜作衬底的Eu3+荧光辐射得到增强。作者基于量子产率对其实验现象做了定量分析,认为量子产率对Eu3+的荧光辐射起决定性作用,为研究表面增强荧光效应奠定了实验和理论基础。
金属纳米颗粒常应用于表面增强荧光效应研究中,该衬底的制备方法简单、耗时短,适当条件控制下,衬底表现出良好的荧光增强效果。ZHU[52]等人利用金纳米颗粒(Au nanoparticle, AuNP)做衬底,在外光场激发下实现了对罗丹明B荧光分子的光谱增强。作者认为, 当罗丹明B荧光物种的发射频率位于AuNP的局部场增强带宽内时,可获得荧光增强效果。另外,作者基于表面等离共振效应分析和讨论了衬底浓度对罗丹明B荧光强度的影响。
金纳米棒(Au nanorod, AuNR)的主要特征是具有两个等离激元共振吸收峰。通过改变AuNR的长径比,可以改变其等离激元吸收峰的位置,实现纳米棒与荧光物种发射峰的完美匹配,从而增强发光中心的荧光信号强度。BABAK等人[46]通过调控AuNR长径比,实现对其纵向等离激元吸收峰峰值的有效调控。ZHU等人[53]制备出了不同壳厚的AuNR@Ag核壳结构,与单纯AuNR相比,AuNR@Ag核壳结构的等离激元吸收峰发生了明显蓝移,产生蓝移的原因可能是由于AuNR@Ag核壳纳米棒长径比减小和壳层结构引入有效调节其等效介电常数[54]。
LIAW等人[55]使用多重元法来分析SiF与AgNP之间的局域场分布,并且计算了两衬底金属间隙区域中探针分子的荧光增强因子,基于数值计算对复合纳米结构局域电磁场进行了讨论分析,认为荧光增强因子取决于等离激元复合纳米结构的构型和平面光波的入射角,如图 5所示。图 5中,k是入对光的波矢,Ei是入射光的电磁波,dg表示SiF与AgNP之间的距离。虽然模拟计算可以得出衬底金属周围的局域场分布以及荧光的增强因子,但是实验观测和理论计算的差距较大,理论计算的荧光增强因子一般都是远远高于实验观测值[10]。主要因素可以概括为以下3点:(1)引入探针分子可导致衬底金属周围介质的折射率或电荷发生变化,从而影响衬底的局域场分布;(2)实验中难以实现对衬底金属间隙距离的精确控制;(3)在实际操作中,激发光的最佳偏振态会因溶液体系中衬底的无序性分布而发生改变。所以理论模拟计算应该考虑实验条件下的极限情况,比如探针表面的电荷分布;入射光波的角度以及偏振态等。
图 5 SiF与AgNP构成的等离激元复合纳米结构[55]
研究表明,局域表面等离激元的共振峰强度、位置与金属纳米颗粒的尺寸、形状以及电介质函数有关,且受它所在环境介质的介电常数影响[56]。因此,不同构型或不同介电属性的纳米结构的LSPR峰特性也有所不同。对于金属的复介电常数ε,可由下式表示:
$ \varepsilon = {\varepsilon _1}\left( {\omega , \psi } \right) + {\rm{i}}{\varepsilon _2}(\omega , \psi ) $
(3) 式中,ω表示入射光的频率,ψ为金属的特征参量(半径或者长径比等),ε1和ε2分别是复介电常数的实部和虚部。金属的介电常数与入射光频率以及颗粒大小有关。金属介电常数的实部确定表面等离吸收峰的位置,而金属介电常数的虚部确定表面等离吸收峰的宽度。在入射光的频率一定前提下,金、银的介电常数以及衬底形貌等对其表面等离吸收峰产生直接影响。因此,不同材料及微观形貌的金属纳米颗粒,其吸收峰和半峰全宽也有所不同[57],如图 6所示。
具有无序结构的金属纳米衬底产生的LSPR可以有效地增强荧光分子的荧光辐射[58-61]。通过湿化学方法制备出具有特殊光学性质的无序贵金属纳米溶胶颗粒可作为金属纳米天线来调控发光中心的荧光辐射,并已成功应用于生物传感[62]和物质检测[63]等领域。
除此之外,电化学法制备金属衬底也获得了广泛应用。例如:通过电化学法制备出的金属纳米分形结构[67]以及金属纳米枝晶状纳米结构[68-69]等,实验中发现,沉积在银分形纳米结构衬底表面的探针分子实现了荧光和喇曼信号的同时增强[67],对表面增强光谱学研究起到了很好的实验支撑。2012年,ZHENG教授课题组[64]利用高纯铝基片与硝酸银之间的置换反应制备出花状银纳米结构衬底(如图 7a所示), 在该衬底的作用下, 罗丹明6G分子荧光辐射增强。作者所在课题组尝试采用置换还原方法,在抛光铜片上制备出Ag/Au双金属纳米簇结[65],如图 7b所示,实现了高达8倍的荧光增强效果。研究表明,低温环境下的金属纳米颗粒更有利于荧光分子实现荧光辐射增强[70]。一般而言,金属的介电函数主要取决于金属尺寸和局域环境。相比室温而言,金属介电函数的非自由电子在低温环境对荧光猝灭有抑制作用,而增强与猝灭在相互竞争的过程,如果猝灭过程被抑制,则荧光物种整体表现出荧光辐射增强的效果。
-
荧光物种与衬底表面之间的距离也是影响表面增强荧光效应的重要因素[12, 71]。图 8中[72], z为衬底金属到发光中心的距离,γem表示荧光物种的荧光发射速率,γem, 0表示荧光物种处于自由态的荧光发射速率。从图 8中可以看出衬底金属与发光中心之间的距离过近会导致荧光分子的辐射速率降低,即产生淬灭效应。为了有效避免荧光猝灭,获得良好的荧光增强效果,可在金属表面引入隔离层。常见的隔离层除SiO2[73]之外,还可引入DNA等物质作为隔离层[74-75]。通过隔离层可调节衬底表面与发光中心的距离,从而对荧光物种的辐射产生调控作用。GANDRA等人在金纳米棒表面引入聚合电解质多层膜作为隔离层可有效调控探针分子的荧光辐射,并基于无辐射能量转移理论对该现象做了分析和讨论[75]。作者认为,荧光分子与金属衬底之间的无辐射能量转移是荧光辐射效率降低的主要原因。
图 8 荧光发射速率随衬底金属到发光中心距离的变化关系[72]
2016年,ZHENG教授课题组[76-77]利用改进方法[78]制备得到AuNR@Ag@SiO2衬底金属,如图 9所示。由于衬底吸收峰与噁嗪725分子发射峰的匹配作用,在特定激发条件得到了5.2倍的荧光增强效果。这主要归因于SiO2层介质折射率的改变导致光传播路径发生变化[79],且所引入SiO2层充当隔离层,可有效避免荧光猝灭现象发生,从而实现荧光增强[73]。
金属纳米颗粒经过自组装处理后,颗粒之间的共振耦合、电磁“热点”形成以及结构的等离激元吸收峰,都会产生新的变化,在表面增强荧光研究中占有重要地位。2016年,GWO[80]课题组对自组装法制备纳米颗粒进行了综述,系统分析了受控自组装实现2维或3维等离激元纳米结构的机理,为制备自组装衬底金属增强荧光提供了理论支撑。HAMON等人[66]利用蒸发自组装的方法,制备得到“AuNR/SiO2”超晶格复合纳米结构,如图 7c和图 7d所示。研究人员发现,复合衬底“AuNR/SiO2”可使结晶紫分子的喇曼散射增强因子提高7倍左右。理论上来说,也可利用该复合材料的“热点”来研究表面增强荧光效应。YU教授课题组[47]利用蒸发自组装方法形成AuNR超晶格阵列并结合有限时域差分法对该结构的局域场做了模拟计算, 计算结果表明:经过自组装处理后AuNR分布变得有序,且纳米棒周围的局域场有效增强。这为自组装AuNR增强荧光提供了实验方法和理论依据。因此,经过自组装处理后金属纳米结构在表面增强光谱学这方面表现出良好的光电性能,并引起越来越多科研人员的关注[81-84]。
在表面增强荧光效应研究中,探针分子除了选用有机荧光染料之外,也有很多课题组把稀土离子作为荧光物种,利用金属微纳结构的表面等离激元特性来调控其荧光发射。CHEN等人[85]在Au-Ag纳米笼表面包覆了不同厚度的NaYF4来调控上转换纳米晶体NaYF4: Yb, Er的荧光辐射行为。实验发现,当中间层NaYF4的厚度为7.5nm时,可获得25倍的荧光增强效果。最近,LEI课题组[86]制备得到NaGdF4: Yb3+, Nd3+@NaGdF4: Yb3+, Er3+@NaGdF4上转发光材料,借助于AuNR@SiO2衬底,实现了红、绿、蓝3种发射光的增强。更为重要的是:通过调节SiO2的厚度使稀土离子发射光实现颜色可调,其在生物医疗和发光器件方面具有潜在的应用价值。
表面增强荧光效应研究进展
Progresses of surface enhanced fluorescence
-
摘要: 在外光场激励下,金属纳米结构衬底表面所形成的集体电子振荡模式可有效调制其局域电磁场分布,对居于衬底附近的荧光分子的荧光辐射产生调控。其影响因素主要取决于衬底金属表面所形成的电磁振荡模式和电磁场分布性质。归纳了光谱学中表面增强荧光效应研究的关键问题,指出了周期性有序衬底金属增强荧光及其金属纳米颗粒增强荧光研究的主要研究进展。基于局域电磁场增强机理模型,讨论了不同形貌衬底金属对荧光分子的荧光调控机理和影响因素。对表面增强荧光效应的研究前景进行了展望。Abstract: Under the excitation of the external light field, the collective electron oscillation mode formed on the surface of the metal nanostructure can effectively modulate the local electromagnetic field distribution, and control the fluorescence radiation of fluorescent molecules near the substrate. The affecting factors mainly depend on electromagnetic oscillation mode and electromagnetic field distribution formed on the surface of the substrate. The key problems in the study on surface enhanced fluorescence effect in spectroscopy are summarized. The main progress of the research of periodically ordered substrate metal enhanced fluorescence and metal nanoparticle enhanced fluorescence is performed. Based on local electromagnetic field enhancement mechanism model, the mechanism and affecting factors of fluorescence regulation of fluorescent molecules on different substrates are discussed. The research prospect of surface enhanced fluorescence effect is prospected.
-
图 5 SiF与AgNP构成的等离激元复合纳米结构[55]
图 8 荧光发射速率随衬底金属到发光中心距离的变化关系[72]
-
[1] DONG J, ZHANG Zh L, ZHENG H R, et al. Recent progress on plasmon-enhanced fluorescence[J]. Nanophotonics, 2015, 4(1):472-490. [2] CHE Y L, CAO X L, LI Q Sh. Preparation and photoluminescence of nano-porous oxidized silicon[J]. Laser Technology, 2008, 32(6):605-607(in Chinese). [3] XU L M, ZHANG Zh L, ZHENG H R, et al. Physical mechanisms of fluorescence enhancement on metal surface[J]. Chinese Journal of Luminescence, 2009, 30(3):8-12(in Chinese). [4] DREXHAGE K H. Influence of a dielectric interface on fluorescence decay time[J]. Journal of Luminescence, 1970, 1/2:693-701. doi: 10.1016/0022-2313(70)90082-7 [5] GERSTEN J, NITZAN A. Spectroscopic properties of molecules interacting with small dielectric particles[J]. Journal of Chemical Phy-sics, 1981, 75(3):1139-1152. doi: 10.1063/1.442161 [6] WEITZ D A, GAROFF S, GERSTEN J I, et al. The enhancement of Raman scattering, resonance Raman scattering and fluorescence from molecules adsorbed on a rough silver surface[J]. Journal of Chemical Physics, 1983, 78(9):5324-5338. doi: 10.1063/1.445486 [7] GEDDES C D, LAKOWICZ J R. Metal-enhanced fluorescence[J]. Journal of Fluorescence, 2002, 12(2):121-129. doi: 10.1023/A:1016875709579 [8] LAKOWICZ J R, SHEN Y B, D'AURIA S, et al. Radiative decay engineering:2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer[J]. Analytical Biochemistry, 2002, 301(2):261-277. doi: 10.1006/abio.2001.5503 [9] LÜ G W, LI W Q, ZHANG T Y, et al. Plasmonic-enhanced molecular fluorescence within isolated bowtie nano-apertures[J]. American Chemical Society Nano, 2012, 6(2):1438-1448. [10] LÜ G W, SHEN H M, CHENG Y Q, et al. Advances in localized surface plasmon enhanced fluorescence[J]. Science Bulletin, 2015, 60(33):3169-3179(in Chinese). [11] DONG J, ZHENG H R, LI X Q, et al. Surface-enhanced fluorescence from silver fractallike nanostructures decorated with silver nanoparticles[J]. Applied Optics, 2011, 50(31):123-126. doi: 10.1364/AO.50.00G123 [12] ZHENG H R, DONG J, ZHANG Zh L, et al. Controlling on the luminescence property of RE ionic and molecular optical centers with nanostructure system[J]. Science Bulletin, 2015, 60(10):899-911(in Chinese). doi: 10.1007/s11434-015-0785-0 [13] CUI X Q, TAWA K, HORI H, et al. Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging[J]. Advanced Functional Materials, 2010, 20(4):546-553. doi: 10.1002/adfm.v20:4 [14] HAO Q, DU D Y, WANG C X, et al. Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates[J]. Scientific Reports, 2014, 4:6014. [15] TIAN R, YAN D P, LI Ch Y, et al. Surface-confined fluorescence enhancement of au nanoclusters anchoring to a two-dimensional ultrathin nanosheet toward bioimaging[J]. Nanoscale, 2016, 8(18):9815-9821. doi: 10.1039/C6NR01624C [16] YANG J, SONG J T, HU W, et al. Fabrication of fluorescence enhancement of quantum dots on a gold colloid formed film for oligonucleotide DNA detection[J]. Analytical Methods, 2017, 9(3):434-442. doi: 10.1039/C6AY02514E [17] BROLO A G, KWOK S C, MOFFITT M G, et al. Enhanced fluorescence from arrays of nanoholes in a gold film[J]. Journal of the American Chemical Society, 2005, 127(42):14936-14941. doi: 10.1021/ja0548687 [18] ZHANG Zh L, ZHENG H R, LIU M C, et al. Surface enhanced fluorescence of Rh6G with gold nanohole arrays[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(11):9803-9807. doi: 10.1166/jnn.2011.5305 [19] ZHANG Q W, WU L, WONG T I, et al. Surface plasmon-enhanced fluorescence on aunanohole array for prostate-specific antigen detection[J]. International Journal of Nanomedicine, 2017, 12:2307-2314. doi: 10.2147/IJN [20] HUNG Y J, SMOLYANINOV I I, DAVIS C C, et al. Fluorescence enhancement by surface gratings[J]. Optics Express, 2006, 14(22):10825-10830. doi: 10.1364/OE.14.010825 [21] CHOU R Y, LI G T, CHENG Y Q, et al. Surface enhanced fluorescence by metallic nano-apertures associated with stair-gratings[J]. Optics Express, 2016, 24(17):19567-19573. doi: 10.1364/OE.24.019567 [22] JIANG Y, WANG H Y, SUN H B, et al. Surface plasmon enhanced fluorescence of dye molecules on metal grating films[J]. Journal of Physical Chemistry, 2011, C115(25):12636-12642. [23] YIN Y, SUN Y, YU M, et al. ZnO Nanorod array grown on ag layer:a highly efficient fluorescence enhancement platform[J]. Scientific Reports, 2015, 5:8152. doi: 10.1038/srep08152 [24] SINGH D P, KUMAR S, SINGH J P. Morphology dependent surface enhanced fluorescence study on silver nanorod arrays fabricated by glancing angle deposition[J]. Royal Society of Chemistry Advances, 2015, 5(40):31341-31346. [25] MEI Zh, TANG L. Surface plasmon coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultra-sensitive DNA analysis[J]. Analytical Chemistry, 2017, 89(1):633-639. doi: 10.1021/acs.analchem.6b02797 [26] ZHONG B B, ZU X H, YI G B, et al. Fluorescence enhancement of the conjugated polymer films based on well-ordered Au nanoparticle arrays[J]. Journal of Nanoparticle Research, 2016, 18(9):281. doi: 10.1007/s11051-016-3588-6 [27] CENTENO A, XIE F. An electromagnetic study of metal enhanced fluorescence due to immobilized nanoparticle arrays on glass substrates[J]. Materials Today Proceedings, 2015, 2(1):94-100. doi: 10.1016/j.matpr.2015.04.013 [28] ZHANG M D, LI C X, WANG C, et al. Polarization dependence of plasmon enhanced fluorescence on Au nanorod array[J]. Applied Optics, 2017, 56(3):375-379. doi: 10.1364/AO.56.000375 [29] SÁNCHEZ-GINZÁLEZ Á, CORNI S, MENNUCCI B. Surface-enhanced fluorescence within a metal nanoparticle array:the role of solvent and plasmon couplings[J]. Journal of Physical Chemistry, 2011, C115(13):5450-5460. [30] YANG B J, LU N, QI D P, et al. Tuning the intensity of metal enhanced fluorescence by engineering silver nanoparticle array[J]. Small, 2010, 6(9):1038-1043. doi: 10.1002/smll.200902350 [31] MING T, ZHAO L, YANG Z, et al. Polarization dependence of plasmon-enhanced fluorescence on single gold nanorods[J]. Nano Letters, 2009, 9(11):3896-3903. doi: 10.1021/nl902095q [32] CORRIGAN T D, GUO S, PHANEUF R J, et al. Enhanced fluorescence from periodic arrays of silver nanoparticles[J]. Journal of Fluorescence, 2005, 15(5):777-784. doi: 10.1007/s10895-005-2987-3 [33] RAETHER H. Surface plasmons on smooth and rough surfaces and on gratings[M]. Berlin/Heidelberg, Germany:Springer, 1998:4-37. [34] ZHANG Z Y, WANG H Y, SUN H B, et al. Surface plasmon-modulated fluorescence on 2-D metallic silver gratings[J]. IEEE Photonics Technology Letters, 2015, 27(8):821-823. doi: 10.1109/LPT.2015.2392431 [35] EBBESEN T W, LEZEC H J, WOLFF P A, et al. Extraordinary optical transmission through subwavelength hole arrays[J]. Nature, 1998, 391(6668):667-669. doi: 10.1038/35570 [36] ENOCH S, POPOV E, NEVIERE M, et al. Enhanced light transmission by hole arrays[J]. Journal of Optics, 2002, A4(5):83-87. [37] GUO P F, WU Sh, XIAO Sh J, et al. Fluorescence enhancement by surface plasmon polaritons on metallic nanohole arrays[J]. Journal of Physical Chemistry Letters, 2010, 1(1):315-318. [38] WANG Y, WU L, ZHOU X D, et al. Incident-angle dependence of fluorescence enhancement and biomarker immunoassay on gold nanohole array[J]. Sensors and Actuators, 2013, B186:205-211. [39] PANG Y T, CHANDRASEKAR R. Cylindrical and spherical membranes of anodic aluminum oxide with highly ordered conical nanohole arrays[J]. Natural Science, 2015, 7(5):232-237. doi: 10.4236/ns.2015.75026 [40] YAN X Q, SUN Y, ZHENG H R, et al. Fluorophore enhancement of Rh6G from silver nanoparticles modulated with porous anodic alumina template[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2012, 42(9):907-913(in Chinese). [41] DAMM S, LORDAN F, MURPHY A, et al. Application of AAO matrix in aligned gold nanorod array substrates for surface enhanced fluorescence and raman scattering[J]. Plasmonics, 2014, 9(6):1371-1376. doi: 10.1007/s11468-014-9751-y [42] CHEN H, OHODNICKI P, BALTRUS J P, et al. High-temperature stability of silver nanoparticles geometrically confined in the nanoscale pore channels of anodized aluminum oxide for SERS in harsh environment[J]. Royal Society of Chemistry Advances, 2016, 6(90):86930-86937. [43] ZHAO W N, WU Y Y, LIU X G, et al. The fabrication of polymer-nanocone-based 3-D Au nanoparticle array and its SERS performance[J].Applied Physics, 2017, A123(1):45. [44] JRUBIM J C, GUTZ G R, SALA O. Surface enhanced Raman scattering (SERS) and fluorescence spectra from mixed copper(Ⅰ)/pyridine/iodide complexes on a copper electrode[J]. Chemical Physics Letters, 1984, 111(1/2):117-122. [45] DONG J, LI X Q, LI J, et al. Fluorescence enhancement from the fractal Ag nanostructured surface[J].Journal of Optoelectronics·Laser, 2012, 23(6):1126-1129(in Chinese). [46] BABAK N, ELSAYED M A. Preparation and growth mechanism of gold nanorods(NRs) using seed-mediated growth method[J]. Chemistry of Materials, 2003, 15(10):1957-1962. doi: 10.1021/cm020732l [47] LI P H, LI Y, YU X F, et al. Evaporative self-assembly of gold nanorods into macroscopic 3-D plasmonic superlattice arrays[J]. Advanced Materials, 2016, 28(13):2511-2517. doi: 10.1002/adma.201505617 [48] YIN N Q, JIANG T T, YU J, et al. Study of gold nanostar@SiO2@CdTeS quantum dots@SiO2with enhanced-fluorescence and photothermal therapy multifunctional cell nanoprobe[J]. Journal of Nanoparticle Research, 2014, 16(3):2306. doi: 10.1007/s11051-014-2306-5 [49] ZHU J, WANG J F, LI J J, et al. Specific detection of carcinoembryonic antigen based on fluorescence quenching of Au-Ag core-shell nanotriangle probe[J]. Sensors and Actuators, 2016, B233:214-222. [50] WANG X, RUDITSKIY A, XIA Y N. Rational design and synthesis of noble-metal nanoframes for catalytic and photonic applications[J]. National Science Review, 2016, 3(4):520-533. [51] WEITZ D A, GAROFF S, HANSON C D, et al. Fluorescent lifetimes of molecules on silver-island films[J]. Optics Letters, 1982, 7(2):89-91. doi: 10.1364/OL.7.000089 [52] ZHU J, ZHU K, HUANG L Q. Using gold colloid nanoparticles to modulate the surface enhanced fluorescence of Rhodamine B[J]. Physics Letters, 2008, A372(18):3283-3288. [53] ZHU J, ZHANG F, LI J J, et al. The effect of nonhomogeneous silver coating on the plasmonic absorption of Au-Ag core-shell nanorod[J]. Gold Bull, 2014, 47(1/2):47-55. [54] CHEN K, LIN C C, VELA J, et al. Multishell Au/Ag/SiO2 nanorods with tunable optical properties as single particle orientation and rotational tracking probes[J]. Analytical Chemistry, 2015, 87(8):4096-4099. doi: 10.1021/acs.analchem.5b00604 [55] LIAW J W, WU H Y, HUANG C C, et al. Metal-enhanced fluore-scence of silver island associated with silver nanoparticle[J]. Nanoscale Research Letters, 2016, 11(26):1-9. [56] MATTEI G, MAZZOLDI P, BERNAS H. Metal nanoclusters for optical properties[M]. Berlin, Germary:Topics in Applied Physics, 1995:287-316. [57] DONG J. Study on surface enhancement fluorescence effect of multimodal nanostructured metal substrate[D].Xi'an: Shaanxi Normal University, 2012: 1-10(in Chinese). [58] ASLAN K, HOLLEY P, GEDDES C D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates[J]. Journal of Materials Chemistry, 2006, 16(27):2846-2852. doi: 10.1039/b604650a [59] LI J, WANG Z Y, GRYCZYNSKI I, et al. Silver nanoparticle enhanced fluorescence in microtransponder-based immuno-and DNA hybridization assays[J]. Analytical & Bioanalytical Chemistry, 2010, 398(5):1993-2001. [60] MISHRA H, ZHANG Y, GEDDES C D. Metal enhanced fluorescence of the fluorescent brightening agent Tinopal-CBX near silver island film[J]. Dyes and Pigments, 2011, 91(2):225-230. doi: 10.1016/j.dyepig.2011.03.005 [61] ZHANG Zh L, ZHENG H R, XU L M, et al. Fluorescence enhancement of mechanically polished metallic surfaces to acridine orange in a sandwiched configuration[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2010, 40(3):1799-1803. [62] ZHANG J, FU Y, MEI Y P, et al. Fluorescent metal nanoshell probe to detect single miRNA in lung cancer cell[J]. Analytical Chemistry, 2010, 82(11):4464-4471. doi: 10.1021/ac100241f [63] LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287):392-395. doi: 10.1038/nature08907 [64] DONG J, ZHENG H R, YAN X Q, et al. Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence[J]. Applied Physics Letters, 2012, 100(5):051112. doi: 10.1063/1.3681420 [65] DONG J, YE Y Y, ZHANG W H, et al. Preparation of Ag/Au bimetallic nanostructures and their application in surface enhanced fluorescence[J]. Luminescence, 2015, 30(7):1090-1093. doi: 10.1002/bio.v30.7 [66] HAMON C, SANZ-ORTIZ M N, MODIN E, et al. Hierarchical organization and molecular diffusion in gold nanorod/silica supercrystal nanocomposites[J]. Nanoscale, 2016, 8(15):7914-7922. doi: 10.1039/C6NR00712K [67] DONG J, QU S X, ZHENG H R, et al. Simultaneous SEF and SERRS from silver fractal-like nanostructure.Sensors and Actuators, 2014, B191:595-599. [68] XU S P, CAO Y X, ZHOU J, et al. Plasmonic enhancement of fluorescence on silver nanoparticle films[J]. Nanotechnology, 2011, 22(27):275715-275722. doi: 10.1088/0957-4484/22/27/275715 [69] MA N, TANG F, WANG X Y, et al. Tunable metal-enhanced fluorescence by stimuli-responsive polyelectrolyte interlayer films[J]. Macromolecular Rapid Communications, 2011, 32(7):587-592. doi: 10.1002/marc.v32.7 [70] ZHANG Y X, ASLAN K, GEDDES C D, et al. Low temperature metal-enhanced fluorescence[J]. Journal of Fluorescence, 2007, 17(6):627-631. doi: 10.1007/s10895-007-0235-8 [71] LÜ F T, ZHENG H R, FANG Y. Studies of surface-enhanced fluorescence[J]. Progress in Chemistry, 2007, 19(2/3):256-266(in Chinese). [72] PASCAL A, PALASH B, LUKAS N. Enhancement and quenching of single-molecule fluorescence[J]. Physical Review Letters, 2006, 96(11):113002. doi: 10.1103/PhysRevLett.96.113002 [73] ABADEER N S, BRENNAN M R, WILSON W L, et al. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods[J].American Chemical Society Nano, 2014, 8(8):8392-8406. [74] LI Y Q, GUAN L Y, ZHANG H L, et al. Distance-dependent metal-enhanced quantum dots fluorescence analysis in solution by capillary electrophoresis and its application to DNA detection[J]. Analytical Chemistry, 2011, 83(11):4103-4109. doi: 10.1021/ac200224y [75] GANDRA N, PORTZo C, TIAN L M, et al. Probing distance-dependent plasmon-enhanced near-infrared fluorescence using polyelectrolyte multilayers as dielectric spacers[J]. Angewandte Chemie International Edition, 2013, 53(3):866-870. [76] REN Z B, LI X Y, GUO J X, et al. Solution-based metal enhanced fluorescence with gold and gold/silver core-shell nanorods[J]. Optics Communications, 2015, 357:156-160. doi: 10.1016/j.optcom.2015.08.071 [77] GUO J X. Study on surface enhancement spectral effect of gold nanorods and their core-shell structures[D]. Xi'an: Shaanxi Normal University, 2016: 39-57(in Chinese). [78] STÖBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid & Interface Science, 1968, 26(1):62-69. [79] ZHAI Y R, MENG L Y, XU L J, et al. Strong fluorescence enhancement with silica-coated Au nanoshell dimers[J]. Plasmonics, 2017, 12(2):263-269. doi: 10.1007/s11468-016-0259-5 [80] GWO S J, CHEN H Y, LIN M H, et al. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics[J]. Chemical Society Reviews, 2016, 45(20):5672-5716. doi: 10.1039/C6CS00450D [81] PENG B, LI Zh P, MUTLUGUN E, et al. Quantum dots on vertically aligned gold nanorod monolayer:plasmon enhanced fluorescence[J]. Nanoscale, 2014, 6(11):5592-5598. doi: 10.1039/C3NR06341K [82] HAMON C, POSTIC M, MAZARI E, et al. Three-dimensional self-assembling of gold nanorods with controlled macroscopic shape and local smectic B order[J]. American Chemical Society Nano, 2012, 6(5):4137-4146. [83] CHEN A Q, DEPRINCE A E, DEMORTIèRE A, et al. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS[J]. Small, 2011, 7(16):2365-2371. doi: 10.1002/smll.v7.16 [84] AHIJADO-GUZMÁN R, GONZÁLEZ-RUBIO G, GIZQUIERDO J, et al. Intracellular pH-induced tip-to-tip assembly of gold nanorods for enhanced plasmonic photothermal therapy[J]. American Chemical Society Omega, 2016, 1(3):388-395. [85] CHEN X, ZHOU D L 1, XU W, et al. Fabrication of Au-Ag nanocage@NaYF4@NaYF4:Yb, Er core-shell hybrid and its tunable upconversion enhancement[J]. Scientific Reports, 2017, 7:41079. doi: 10.1038/srep41079 [86] KANG F W, HE J J, SUN T Y, et al. Plasmonic dual-enhancement and precise color tuning of gold nanorod@SiO2 coupled core-shell-shell upconversion nanocrystals[J]. Advanced Functional Materials, 2017, 27(36):1701842(1-11). [87] ZHUANG Y, MA Ch Q, WANG X H, et al. Simultaneous determination of three antibiotics based on synchronous fluorescence combined with neural network[J]. Laser Technology, 2017, 41(4):489-493(in Chinese). [88] LI J L, GU M. Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells[J]. Biomaterials, 2010, 31(36):9492-9498. doi: 10.1016/j.biomaterials.2010.08.068 [89] JI X F, XIAO Ch Y, LAU W F, et al. Metal enhanced fluorescence improved protein and DNA detection by zigzag Ag nanorod arrays[J]. Biosensors and Bioelectronics, 2016, 82:240-247. doi: 10.1016/j.bios.2016.04.022 [90] HIRSCH L R, STAFFORD R J, BANKSON J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(23):13549-13554. doi: 10.1073/pnas.2232479100 [91] CHEN H X, QI F J, ZHOU H J, et al. Fe3O4@Au nanoparticles as a means of signal enhancement in surface plasmon resonance spectroscopy for thrombin detection[J]. Sensors and Actuators, 2015, B212:505-511. [92] ZHOU Y, MA Z F. A novel fluorescence enhanced route to detect copper(Ⅱ) by click chemistry-catalyzed connection of Au@SiO2 and carbon dots[J]. Sensors and Actuators, 2016, B233:426-430. [93] UMH H N, SHIN H H, YI J, et al. Fabrication of gold nanowires (GNW) using aluminum anodic oxide (AAO) as a metal-ion sensor[J]. Korean Journal of Chemical Engineering, 2015, 32(2):299-302. doi: 10.1007/s11814-014-0201-5 [94] CHEN Zh, LI H, JIA W C, et al. Bivalent aptasensor based on silver enhanced fluorescence polarization for rapid detection of lactoferrin in milk[J]. Analytical Chemistry, 2017, 89(11):5900-5908. doi: 10.1021/acs.analchem.7b00261 [95] BASU T, RANA K, DAS N, et al. Selective detection of Mg2+ ions via enhanced fluorescence emission using Au-DNA nanocomposites[J]. Beilstein Journal of Nanotechnology, 2017, 8:762-771. doi: 10.3762/bjnano.8.79 [96] FU Y, LAKOWICZ J R. Single-molecule studies of enhanced fluorescence on silver island films[J]. Plasmonics, 2007, 2(1):1-4. [97] DEEP P, JUAN D T, HERVÉ R, et al. Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration[J]. Optics Express, 2013, 21(22):27338-27343. doi: 10.1364/OE.21.027338 [98] ZHANG W C, CALDAROLA M, PRADHAN B, et al. Gold nanorod enhanced fluorescence enables single-molecule electrochemistry of methylene blue[J]. Angewandte Chemie International Edition, 2017, 56(13):3566-3569. doi: 10.1002/anie.201612389 [99] FUJIKI A, UEMURA T, KUWAHARA Y, et al. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diods[J]. Applied Physics Letters, 2010, 96(4):043307. doi: 10.1063/1.3271773 [100] CHO N K, LEE S M, KANG S J, et al. Enhanced quantum-dot light-emitting diodes using gold nanorods[J]. Journal of the Korean Physical Society, 2015, 67(9):1667-1671. doi: 10.3938/jkps.67.1667 [101] CHEN Ch, CHEN J W, ZHANG J, et al. Ag-decorated localized surface plasmon-enhanced ultraviolet electroluminescence from ZnO quantum dot-based/GaN heterojunction diodes by optimizing MgO interlayer thickness[J]. Nanoscale Research Letters, 2016, 11(1):480. doi: 10.1186/s11671-016-1701-5