-
为了分析干涉对错位参量的依赖性,制作两套不同错位量D和不同干涉长度L的干涉仪。通过使用不同错位量和不同干涉长度的干涉仪获得的透射谱如图 2所示。可以看出,干涉谱受错位量和干涉长度参量变化的影响。对于本研究中使用的传感器,在考虑错位量大小和插入损耗之间的折衷时,选择了3.75μm作为错位量。同样,从干涉谱强度及干涉稳定性的角度考虑,传感器长度为4cm被选定为最佳干涉长度。
传感头的结构示意图如图 3a所示。一段长度为L=4cm的单模光纤(SMF-28 Corning)错位熔接于两段SMF之间,错位量D=3.75μm。图 3b为光学显微镜下的错位结构,放大倍数为50倍,SMF的芯/包层直径DSMF=9.2μm/125μm。当脉冲信号到达第1个错位点时,由于模式不匹配,包层中的多种模式被激发,脉冲信号分为两部分:一部分沿着纤芯;另一部分在包层内传输,然后在第2个错位点重新耦合到纤芯中。当错位点处的浓度或温度改变时,导致芯/包层模式的有效折射率发生变化,在传输过程中产生光程差,从而引起干涉。经传感头后的输出光强描述为:
$ \begin{array}{c} I = \sum\limits_m {2{I_{{\rm{co}}}}{I_{{\rm{cl}}, m}}} \left[ {\cos {\phi _m} - } \right.\\ {\left. {\left( {{I_{{\rm{co}}}} + \sum\limits_m {{I_{{\rm{cl}}, m}}} } \right)/\sum\limits_m {2\sqrt {{I_{{\rm{co}}}}{I_{{\rm{cl}}, m}}} } } \right]^2} \end{array} $
(1) 式中,Ico是纤芯模的光强,Icl, m是m阶包层模的光强,ϕm是光纤环内脉冲光的相位差,表示为:
$ {\phi _m} = \frac{{4{\rm{ {\rm{ \mathsf{ π} }}}}\Delta {n_{{\rm{eff, }}m}}L}}{\lambda } $
(2) 式中,Δneff, m=neff, co-neff, cl, m代表有效折射率差,neff, co是纤芯的有效折射率,neff, cl, m是m阶包层的有效折射率,L是干涉长度(干涉仪的有效长度),λ是光波波长。基于干涉理论,透射光谱中第m阶的波长λm表示为:
$ {\lambda _m} = \frac{{2\Delta {n_{{\rm{eff, }}m}}L}}{{2m + 1}} $
(3) 由(1)式~(3)式可知,传感头外部浓度或温度的变化导致相位变化,最终输出光强会相应改变。时域法通常是通过监测光纤环路中光脉冲的衰减寿命来确定光纤环内的光损耗。下式描述了示波器检测到的光强的时间衰减特性:
$ \begin{array}{c} I = {I_0}{\rm{exp}}\left( { - \frac{{cAt}}{{nd}}} \right), \\ (t = {t_0} + \left( {N - 1} \right)T, N = 1, 2, 3, \ldots ) \end{array} $
(4) 式中,I是第N次光脉冲在t0+(N-1)T时的输出光强,I0是在时间t0时的初始光强,且t=t0+(N-1)T是输出脉冲光强的采样时间。环形腔的衰减时间τ被定义为光衰减到其初始光强的1/e所需的时间,该表达式为:
$ \tau = \frac{{nd}}{{c(A + B - G)}} $
(5) 式中,d是光纤环腔的长度,c是光速,n是光纤环腔的折射率,G是EDFA的增益,A是空载时的总损耗(包括光纤环腔的吸收、光纤耦合器的插入损耗、光纤的散射损耗和光纤的连接损耗), B是由浓度和温度引起的传输损耗。A和G在(5)式中是定值,τ仅与B有关, 即当浓度或温度改变时,腔内传输损耗将相应改变。因此,浓度或温度可利用衰减时间与浓度或温度之间的关系求得。
基于光纤腔衰荡光谱的浓度和温度测量
Measurement of concentration and temperature based on fiber loop ring-down spectroscopy
-
摘要: 为了提高浓度和温度测量的灵敏度和稳定性,采用时域分析法监测光纤系统中的光损耗,研制了基于光纤环形腔衰荡光谱的传感系统。基于该系统对浓度和温度进行传感测量实验,分析了错位传感结构的参量选择,并研究了空载时腔内信号放大对脉冲强度和脉冲数量的影响。结果表明,当干涉长度L和错位量D分别为4cm和3.75μm时,干涉效果最优;脉冲强度是无腔内放大时的4倍且脉冲数量更多;当蔗糖和葡萄糖溶液浓度为0.100g/mL~0.400g/mL时,浓度灵敏度为756.51μs/(g/mL)和909.07μs/(g/mL),检测限为0.0014g/mL;当温度为30℃~200℃时,温度灵敏度为1.83μs/℃。该系统的设计和研究为浓度和温度的传感应用提供了有价值的指导。Abstract: In order to improve the sensitivity and stability of concentration and temperature measurement, the optical loss in the optical fiber system was monitored by means of time-domain analysis. A sensing system based on fiber loop ring-down spectroscopy (FLRDS) was proposed. Based on the measurement results of concentration and temperature, parameter selection of the core-offset sensing structure was analyzed experimentally. The effect of intra-cavity signal amplification on pulse intensity and pulse number was studied. The results show that, when the interference length L and offset D are 4cm and 3.75μm respectively, interference effect is optimal. Pulse peak intensity is 4 times that without intra-cavity amplification and pulse number is bigger. When the sucrose and glucose concentration is 0.100g/mL~0.400g/mL, concentration sensitivities are 756.51μs/(g/mL) and 909.07μs/(g/mL), and the detection limit is 0.0014g/mL. The temperature sensitivity is 1.83μs/℃ in the range of 30℃~200℃. The design and research of this system provide valuable guidance for sensing application of concentration and temperature.
-
Key words:
- sensor technique /
- fiber loop ring-down /
- interference /
- core-offset
-
-
[1] BROWN R S, KOZIN I, TONG ZH G, et al. Fiber-loop ring-down spectroscopy[J]. Journal of Chemical Physics, 2002, 117(23):10444-10447. doi: 10.1063/1.1527893 [2] GIEL B, RUDY P, GERARD M. Cavity ring-down spectroscopy:Experimental schemes and applications[J]. International Reviews in Physical Chemistry, 2000, 19(4):565-607. doi: 10.1080/014423500750040627 [3] TONG Z, WRIGHT A, MCCORMICK T, et al. Phase-shift fiber-loop ring-down spectroscopy[J]. Analytical Chemistry, 2004, 76(22):6594-9. doi: 10.1021/ac0491253 [4] CROSSON E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics, 2008, B92(3):403-408. [5] LIU Y, LIU B, FENG X, et al. High-birefringence fiber loop mirrors and their applications as sensors[J]. Applied Optics, 2005, 44(12):2382-2390. doi: 10.1364/AO.44.002382 [6] STEWART G, ATHERTON K, CULSHAW B. Cavity-enhanced spectroscopy in fiber cavities[J]. Optics Letters, 2004, 29(5):442-444. doi: 10.1364/OL.29.000442 [7] PU S, GU X. Fiber loop ring-down spectroscopy with a long-period grating cavity[J]. Optics Letters, 2009, 34(12):1774-1776. doi: 10.1364/OL.34.001774 [8] ANDERSON D Z, FRISCH J C, MASSER C S. Mirror reflectometer based on optical cavity decay time[J]. Applied Optics, 1984, 23(8):1238-1245. doi: 10.1364/AO.23.001238 [9] CHEN N, XU P, PANG F, et al. Low-loss fiber-optic intrinsic fabry-perot micro-cavity interferometric sensor[C]//Microwave Conference, 2008 China-Japan Joint. New York, USA: IEEE, 2008: 612-615. [10] SÁNCHEZ M D, KUZIN E A, IBARRAESCAMILLA B, et al. Dual-wavelength fiber laser based on fine adjustment of cavity loss by a fiber optical loop mirror[J]. Proceedings of the SPIE, 2013, 8601:860126. doi: 10.1117/12.2002059 [11] SILVA S, MÃGALHAES R, PÉREZ-HEPRERA R A, et al. Fiber cavity ring down and gain amplification effect[J], Photonic Sensors, 2016, 6(4):324-327. doi: 10.1007/s13320-016-0309-9 [12] LIU K, LIU T G, PENG G D, et al. Theoretical investigation of an optical fiber amplifier loop for intra-cavity and ring-down cavity gas sensing[J]. Sensors & Actuators, 2010, B146(1):116-121. [13] GOUVEIA C, AVELINO J, JORGE P A S, et al. Fabry-Pérot cavity based on a high-birefringent fiber Bragg grating for refractive index and temperature measurement[J]. IEEE Sensors Journal, 2012, 12(1):17-21. [14] BAO J L, ZHANG X M, CHEN K Sh, et al. Progresses and applications of fiber grating sensor[J]. Laser Technology, 2000, 24(3):174-178(in Chinese). [15] LU P, MEN L Q, SOOLEY K, et al. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature[J]. Applied Physics Letters, 2009, 94(13):131110. doi: 10.1063/1.3115029 [16] LUO H D, HUANG Y L. Design of a single channel optical switch based on all-fiber Mach-Zehnder interferometer[J]. Laser Technology, 2012, 36(4):438-440(in Chinese). [17] HIRAYAMA N, SANO Y. Fiber Bragg grating temperature sensor for practical use[J]. ISA Transactions, 2000, 39(2):169-173. doi: 10.1016/S0019-0578(00)00012-4 [18] WU D, ZHU T, CHIANG K S, et al. All single-mode fiber Mach-Zehnder interferometer based on two Peanut-shape structures[J]. Journal of Lightwave Technology, 2012, 30(5):805-810. doi: 10.1109/JLT.2011.2182498 [19] LIU H L, CHEN Y, CHEN L J, et al. Concentration and temperature sensing accurately in a concatenated FBG and LPG[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(6):649-654. doi: 10.1016/j.ijleo.2015.01.015 [20] HAO Q, HE L, SONG Y. Real-time measurement of concentration and temperature of solution by two different wavelengths Mach-Zehnder interferometry during crystal growth[J]. Proceedings of the SPIE, 2005, 5638:216-222. doi: 10.1117/12.574561