-
在激光器中,激光光束质量的空间分布主要取决于激光横模,不同的激光模具有不同的损耗。一般来说,在激光谐振腔内存在两种不同性质的损耗,一种是与激光横模阶数无关的损耗,如激光工作物质的内部损耗、腔镜的透射损耗,腔内元件的吸收、散射损耗等;另一种则是与激光横模阶数密切相关的衍射损耗。衍射损耗对激光的各阶横模的振荡有重要影响,这一特性是实现激光横模选择并得到高光束质量激光输出的物理基础。
从激光原理可知,激光是通过谐振腔的反馈与激光增益介质共同作用而形成激光振荡的,只有损耗较低的激光模才能在激光增益介质中形成稳定的激光场分布,并通过谐振腔输出镜耦合,产生激光输出。由于激光谐振腔镜几何尺寸是有限的,所以当激光在两镜间往返传播时,必然会因谐振腔镜边缘的衍射效应而产生损耗。如图 1所示,设在经过多次往返传播后,腔镜M1的光波稳态场为E1(x,y),在M2镜面上光波稳态场为E2(x,y),则两者之间应有如下的自洽关系式成立[4]:
$ {E_2}\left( {x, y} \right) = \gamma {E_1}\left( {x, y} \right) $
(1) 式中, γ为一复常数因子。如果不考虑传输、吸收和输出等损耗时,γ表示激光谐振腔的衍射损耗,它反映了经历一次单程传播后,光场振幅和位相的变化。在一次单程行进中总的能量损耗δ1可以表示为:
$ {\delta _1} = \frac{{{{\left| {{E_1}\left( {x, y} \right)} \right|}^2} - {{\left| {{E_2}\left( {x, y} \right)} \right|}^2}}}{{{{\left| {{E_1}\left( {x, y} \right)} \right|}^2}}} = 1 - {\left| \gamma \right|^2} $
(2) 如图 1所示,激光谐振腔为对称球面谐振腔,两端反射镜M1和M2的曲率半径同为R,腔长为L,两镜均为圆形镜,镜面半径为a。在圆柱坐标系(r,φ)下,由菲涅耳-基尔霍夫衍射积分公式,可以得到从镜面M1到镜面M2的光场分布为:
$ \gamma E\left( {{r_2}, {\varphi _2}} \right) = \frac{{\rm{i}}}{{\lambda R}}\int_0^a {\int_0^{2{\rm{ \mathit{ π} }}} {{{\rm{e}}^{ - {\rm{i}}k\rho }}E\left( {{r_1}, {\varphi _1}} \right){r_1}{\rm{d}}{r_1}{\rm{d}}{\varphi _1}} } $
(3) 式中, r为径向半径,φ为相位差,λ为波长,k为波数,ρ为谐振腔两镜面任意两点连线距离。如果激光谐振腔为共焦腔,即谐振腔两端反射镜M1和M2的曲率半径R等于腔长L,激光场E(r,φ)就可以写成:
$ \begin{array}{*{20}{c}} {\gamma E\left( {{r_2}, {\varphi _2}} \right) = {\rm{i}}\frac{{{{\rm{e}}^{ - {\rm{i}}kR}}}}{{\lambda R}}\int_0^a {\int_0^{2{\rm{ \mathit{ π} }}} {\exp \left[ {{\rm{i}}k\frac{{{r_1}{r_2}}}{R}\cos \left( {{\varphi _1} - {\varphi _2}} \right)} \right] \times } } }\\ {E\left( {{r_1}, {\varphi _1}} \right){r_1}{\rm{d}}{r_1}{\rm{d}}{\varphi _1}} \end{array} $
(4) 采用数值计算方法才能由此积分方程得到衍射损耗γ的计算结果[5]。
为了更方便地计算激光谐振腔的衍射损耗,可以用近似方法求解积分方程(4)式[6],得到(4)式的解析表达式,即激光谐振腔镜面处光场分布为:
$ \begin{array}{*{20}{c}} {{E_{mn}}\left( {r, \varphi } \right) = }\\ {{C_{mn}}{{\left( {\sqrt {\frac{{2{\rm{ \mathit{ π} }}}}{{\lambda R}}} r} \right)}^m}{\rm{L}}_n^m\left( {\frac{{2{\rm{ \mathit{ π} }}}}{{\lambda R}}{r^2}} \right)\exp \left( { - \frac{{\rm{ \mathit{ π} }}}{{\lambda R}}{r^2}} \right)\exp \left( { - {\rm{i}}m\varphi } \right)} \end{array} $
(5) 式中, m, n为激光横模的阶数,为正整数,Cmn是归一化系数,Lnm(ξ)是n阶缔合拉盖尔多项式。由于选模激光器的光阑并不只是由激光输出镜完成,为了计算通过腔内光阑进行激光选模所形成衍射损耗,有必要将(5)式所表达的激光谐振腔镜面光场拓展到激光谐振腔内。由电磁场的麦克斯韦方程组,可以得到一般稳定谐振腔内任意一点z处的激光场分布[7]:
$ \begin{array}{*{20}{c}} {E\left( {r, \varphi , z} \right) = {E_0}{{\left( {\frac{{{w_0}}}{{w\left( z \right)}}} \right)}^{m + 2n + 1}}{{\left( {\frac{{\sqrt 2 r}}{{w\left( z \right)}}} \right)}^m}{\rm{L}}_n^m\left( {\frac{{2{r^2}}}{{{w^2}\left( z \right)}}} \right) \times }\\ {\exp \left[ { - \frac{{{r^2}}}{{{w^2}\left( z \right)}}} \right]\exp \left\{ { - {\rm{i}}\left[ {kz + \frac{{k{r^2}}}{{2R\left( z \right)}} - } \right.} \right.}\\ {\left. {\left. {\left( {m + 2n + 1} \right)\arctan \left( {\frac{{2z}}{{kw_0^2}}} \right)} \right]} \right\}\exp \left( { - {\rm{i}}m\varphi } \right)} \end{array} $
(6) 式中, E0是中心光强,w0是激光束的光腰半径,w(z)是腔内某处激光模的光斑半径,R(z)是光束波面曲率半径。因此,在谐振腔中纵向任意一点z处的光强为:
$ \begin{array}{*{20}{c}} {I\left( z \right) = E{E^ * } = E_0^2{{\left( {\frac{{{w_0}}}{{w\left( z \right)}}} \right)}^{2\left( {m + n + 1} \right)}}{{\left( {\frac{{\sqrt 2 r}}{{w\left( z \right)}}} \right)}^{2m}} \times }\\ {{{\left[ {{\rm{L}}_n^m\left( {\frac{{2{r^2}}}{{{w^2}\left( z \right)}}} \right)} \right]}^2}\exp \left[ { - 2\frac{{{r^2}}}{{{w^2}\left( z \right)}}} \right]} \end{array} $
(7) 用(7)式计算在激光谐振腔内某处z放置孔径为2a的光阑或直接由尺寸为2a的谐振腔镜所形成的衍射损耗[8],即通过腔内光阑腔镜后逸出的激光功率为:
$ P = \int_0^{2{\rm{ \mathit{ π} }}} {\int_0^a {I\left( {r, \varphi } \right)r{\rm{d}}r{\rm{d}}\varphi } } $
(8) 它与总光功率之比为:
$ \beta = \frac{{\int_0^{2{\rm{ \mathit{ π} }}} {\int_0^a {I\left( {r, \varphi } \right)r{\rm{d}}r{\rm{d}}\varphi } } }}{{\int_0^{2{\rm{ \mathit{ π} }}} {\int_0^\infty {I\left( {r, \varphi } \right)r{\rm{d}}r{\rm{d}}\varphi } } }} $
(9) 因此,激光在谐振腔内的衍射损耗就是:
$ \begin{array}{*{20}{c}} {{\delta _{mn}} = 1 - \beta = 1 - }\\ {\frac{{\int_0^{2{\rm{ \mathit{ π} }}} {\int_0^a {{r^{2m}}{{\left[ {{\rm{L}}_n^m\left( {\frac{{2{r^2}}}{{{w^2}}}} \right)} \right]}^2}\exp \left( { - 2\frac{{{r^2}}}{{{w^2}}}} \right)r{\rm{d}}r{\rm{d}}\varphi } } }}{{\int_0^{2{\rm{ \mathit{ π} }}} {\int_0^\infty {{r^{2m}}{{\left[ {{\rm{L}}_n^m\left( {\frac{{2{r^2}}}{{{w^2}}}} \right)} \right]}^2}\exp \left( { - 2\frac{{{r^2}}}{{{w^2}}}} \right)r{\rm{d}}r{\rm{d}}\varphi } } }}} \end{array} $
(10) 即激光的单程衍射损耗δ与激光模式的阶数m,n有关。在共焦腔下,半径$w = \sqrt {\lambda L/{\rm{ \mathit{ π} }}} $,且菲涅耳数N=a2/(λL),如果分别代入所对应的Lnm(x),通过(10)式进行计算,就可以得出以N参量表达的各阶激光模式衍射损耗解析计算式,例如:
$ \begin{array}{*{20}{c}} {{\delta _{00}} = {{\rm{e}}^{ - 2{\rm{ \mathit{ π} }}N}}, }\\ {{\delta _{10}} = \left( {2{\rm{ \mathit{ π} }}N + 1} \right){{\rm{e}}^{ - 2{\rm{ \mathit{ π} }}N}}, }\\ {{\delta _{20}} = \left( {2{{\rm{ \mathit{ π} }}^2}{N^2} + 2{\rm{ \mathit{ π} }}N + 1} \right){{\rm{e}}^{ - 2{\rm{ \mathit{ π} }}N}}, }\\ {{\delta _{30}} = \left( {1 + 2{\rm{ \mathit{ π} }}N + 2{{\rm{ \mathit{ π} }}^2}{N^2} + \frac{4}{3}{{\rm{ \mathit{ π} }}^3}{N^3}} \right)\exp \left( { - 2\frac{{{a^2}}}{{{w^2}}}} \right), }\\ {{\delta _{12}} = \left( {1 + 2{\rm{ \mathit{ π} }}N - 4{{\rm{ \mathit{ π} }}^2}{N^2} + \frac{{40}}{3}{{\rm{ \mathit{ π} }}^3}{N^3} - } \right.}\\ {\left. {\frac{{28}}{3}{{\rm{ \mathit{ π} }}^4}{N^4} + \frac{8}{3}{{\rm{ \mathit{ π} }}^5}{N^5}} \right)\exp \left( { - 2\frac{{{a^2}}}{{{w^2}}}} \right), }\\ {{\delta _{03}} = \left( {1 + \frac{{1020}}{{511}}{\rm{ \mathit{ π} }}N + \frac{{1032}}{{511}}{{\rm{ \mathit{ π} }}^2}{N^2} + \frac{{656}}{{511}}{{\rm{ \mathit{ π} }}^3}{N^3} + } \right.}\\ {\left. {\frac{{372}}{{511}}{{\rm{ \mathit{ π} }}^4}{N^4} + \frac{{96}}{{511}}{{\rm{ \mathit{ π} }}^5}{N^5} + \frac{{64}}{{511}}{{\rm{ \mathit{ π} }}^6}{N^6}} \right)\exp \left( { - 2\frac{{{a^2}}}{{{w^2}}}} \right), }\\ \cdots \end{array} $
(11) 采用(11)式所示的解析计算公式与国外文献中给出的数值计算结果比较,可知当N>0.7以后,相对误差在0.2%以内。这就是说前面的近似求解积分方程,并不要求N很大。在较小的菲涅耳数N下,采用简单的解析方法已有足够的计算精度。另外,对于一般的稳定激光谐振腔,可以用共焦腔的等价性原理进行变换[4],从而得出其衍射损耗的计算公式。令图 1中两腔镜的曲率半径分别为R1和R2,在谐振腔长为L下,引入g参量,即g1=1-L/R1,g2=1-L/R2,那么当激光谐振腔满足稳定性条件0≤g1g2≤1时,可以解析表达一般稳定激光谐振腔衍射损耗计算公式,例如:
$ \left\{ \begin{array}{l} {\delta _{00}} = \exp \left[ { - 2{\rm{ \mathit{ π} }}N\sqrt {\frac{{{g_1}\left( {1 - {g_1}{g_2}} \right)}}{{{g_2}}}} } \right]\\ {\delta _{10}} = \left[ {2{\rm{ \mathit{ π} }}N\sqrt {\frac{{{g_1}\left( {1 - {g_1}{g_2}} \right)}}{{{g_2}}}} + 1} \right] \times \\ \;\;\;\;\;\;\;\exp \left[ { - 2{\rm{ \mathit{ π} }}N\sqrt {\frac{{{g_1}\left( {1 - {g_1}{g_2}} \right)}}{{{g_2}}}} } \right]\\ {\delta _{20}} = \left[ {2{{\rm{ \mathit{ π} }}^2}{N^2}{g_1}\frac{{\left( {1 - {g_1}{g_2}} \right)}}{{{g_2}}} + } \right.\\ \;\;\;\;\;\;\;\left. {2{\rm{ \mathit{ π} }}N\sqrt {\frac{{{g_1}\left( {1 - {g_1}{g_2}} \right)}}{{{g_2}}}} + 1} \right] \times \\ \;\;\;\;\;\;\;\exp - \left[ { - 2{\rm{ \mathit{ π} }}N\sqrt {\frac{{{g_1}\left( {1 - {g_1}{g_2}} \right)}}{{{g_2}}}} } \right]\\ \cdots \end{array} \right. $
(12)
激光谐振腔中模的衍射损耗分析
Analysis of diffraction loss in laser resonator
-
摘要: 为了使激光器输出高质量的光束,采用一种简化计算各阶横模的衍射损耗的新方法,进行了理论分析和数值计算。结果表明,当各阶横模的菲涅耳数N>0.7时,与精确数值计算结果的相对误差在0.2%以内;采用新算法计算出来的各阶横模的衍射损耗能够满足足够的精度,是合理可行的。该研究可以为设计高光束质量的激光器提供理论指导。Abstract: In order to achieve laser output with high quality beam, one new method to simplify the calculation of diffraction loss of different order transverse modes was used by theoretical analysis and numerical calculation. The results show that, when Fresnel number of different transverse modes N>0.7, the relative error between simplified calculation and accurate calculation is less than 0.2%. The diffraction loss of different order transverse modes calculated by the new algorithm can meet the sufficient accuracy. The new algorithm is reasonable and feasible. The sorting of diffraction loss of laser transverse modes carried out by the simplified algorithm rapidly can provide theoretical guidance for the design of high beam quality lasers.
-
Key words:
- lasers /
- diffraction loss /
- analytical solution /
- resonator transverse mode
-
-