高级检索

基于超长分布式2阶喇曼放大器的光载射频传输

张宇舟, 金晓峰, 金向东, 余显斌, 郑史烈, 池灏, 章献民

张宇舟, 金晓峰, 金向东, 余显斌, 郑史烈, 池灏, 章献民. 基于超长分布式2阶喇曼放大器的光载射频传输[J]. 激光技术, 2018, 42(3): 300-305. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.003
引用本文: 张宇舟, 金晓峰, 金向东, 余显斌, 郑史烈, 池灏, 章献民. 基于超长分布式2阶喇曼放大器的光载射频传输[J]. 激光技术, 2018, 42(3): 300-305. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.003
ZHANG Yuzhou, JIN Xiaofeng, JIN Xiangdong, YU Xianbin, ZHENG Shilie, CHI Hao, ZHANG Xianmin. Radio-over-fiber transmission based on ultra-long distributed 2-order Raman amplifier[J]. LASER TECHNOLOGY, 2018, 42(3): 300-305. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.003
Citation: ZHANG Yuzhou, JIN Xiaofeng, JIN Xiangdong, YU Xianbin, ZHENG Shilie, CHI Hao, ZHANG Xianmin. Radio-over-fiber transmission based on ultra-long distributed 2-order Raman amplifier[J]. LASER TECHNOLOGY, 2018, 42(3): 300-305. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.003

基于超长分布式2阶喇曼放大器的光载射频传输

详细信息
    作者简介:

    张宇舟(1991-), 男, 硕士研究生, 现主要从事光纤放大器件的研究

    通讯作者:

    金晓峰, E-mail:jinxf00@zju.edu.cn

  • 中图分类号: TN925

Radio-over-fiber transmission based on ultra-long distributed 2-order Raman amplifier

  • 摘要: 为了提升光载射频传输链路的链路增益以及传输距离,采用了L波段的超长分布式2阶喇曼放大器结构对光信号进行放大。从理论上对分布式2阶喇曼放大器以及光载射频传输链路的原理进行了解释,利用信号光、1阶抽运光、2阶抽运光以及噪声之间的耦合方程组分析了它们之间的关系,并且得到了基于超长分布式2阶喇曼放大器的光载射频传输系统的1阶射频信号增益。通过数值仿真以及系统实验得到了抽运功率大小对超长分布式2阶喇曼放大器的开关增益的影响、光载射频传输系统在0GHz~7GHz范围内的频率响应及其射频增益以及该光载射频传输链路在应用超长分布式2阶喇曼放大器后的相位噪声情况。结果表明,光载射频传输在超长分布式2阶喇曼放大器的作用下获得了28.1dB的链路增益,在距离为80.94km的光链路上实现了近似无损传输,射频信号开关增益与射频信号频率无关。该研究在光载射频链路的长距离传输中有重要的应用价值。
    Abstract: In order to improve the link gain and transmission distance of radio-over-fiber (RoF) frequency transmission link, ultra-long distributed second-order Raman amplifier structure in L band was used to amplify the light signal. The principle of the distributed 2-order Raman amplifier and the RoF transmission link were explained theoretically. The relationships among them were analyzed by using the coupling equations between signal light, 1-order pumping light, 2-order pumping light and noise. The 1-order radio frequency (RF) signal gain of a RoF transmission system based on ultra-long distributed 2-order Raman amplifier was also obtained. Through numerical simulation and system experiment, the effect of pumping power on on-off gain of ultra-long distributed 2-order Raman amplifier, frequency response and RF gain of RoF transmission system in the range of 0GHz~7GHz, and phase noise of RoF transmission link after the application of ultra-long distributed 2-order Raman amplifier were obtained. The results show that the link gain of 28.1dB is obtained by RoF transmission after the application of an ultra-long distributed 2-order Raman amplifier. Approximate lossless transmission is achieved in optical link with a distance of 80.94km. The on-off gain of RF signal is independent of the frequency of RF signal. The study has important application value in long distance transmission of optical radio frequency links.
  • Figure  1.   Ultra-long distributed second-order Raman amplifier

    Figure  2.   Radio-over-fiber transmission link model based on ultra-long distributed second-order Raman amplifier

    Figure  3.   Relationship between distance and power of pumps, signal and noisewithin 80.94km under the first-order Raman amplifier

    Figure  4.   Relationship between distance and power of pumps, signal and noise within 80.94km under the second-order Raman amplifier

    Figure  5.   Simulation relationship between frequency and the first-order gain of radio-over-fiber transmission link ranging from 0GHz to 7GHz

    Figure  6.   Radio-over-fiber transmission links based on ultra-long distributed second-order Raman amplifier

    Figure  7.   Relationship between on-off gain of ultra-long distributed second-order Raman amplifier and pump power

    Figure  8.   Experimental relationship between frequency and the first-order gain of radio-over-fiber transmission link ranging from 0GHz to 7GHz

    Figure  9.   Phase noise of radio-over-fiber transmission link with pump power of 32.0dBm and 0dBm

  • [1]

    SEEDS A J, WILLIAMS K J. Microwave photonics[J]. Journal of Lightwave Technology, 2006, 24(12):4628-4641. DOI: 10.1109/JLT.2006.885787

    [2]

    YAO J. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3):314-335. DOI: 10.1109/JLT.2008.2009551

    [3]

    WAKE D, WEBSTER M, WIMPENNY G, et al. Radio over fiber for mobile communications[C]//2004 IEEE International Topical Meeting on Microwave Photonics. New York, USA: IEEE, 2004: 157-160.

    [4]

    SONG H J, LEE J S, SONG J I. All-optical frequency upconversion of radio over fibre signal with optical heterodyne detection[J]. Electronics Letters, 2004, 40(5):330-331. DOI: 10.1049/el:20040219

    [5]

    NAJI A W, HAMIDA B A, CHENG X S, et al. Review of Erbium-doped fiber amplifier[J]. International Journal of Physical Sciences, 2011, 6(20):4674-4689.

    [6]

    BOUZID B. Analysis and review of erbium doped fiber amplifier[C]//2013 Saudi International Electronics, Communications and Photonics Conference.New York, USA: IEEE, 2013: 1-5.

    [7]

    LI Z, NIRMALATHAS A, BAKAUL M, et al. Performance of WDM fiber-radio network using distributed Raman amplifier[J]. IEEE Photonics Technology Letters, 2006, 18(4):553-555. DOI: 10.1109/LPT.2005.863179

    [8]

    CHANDRA S, VARDHANAN A V, GANGOPADHYAY R. Simultaneous dispersion and non-linearity compensation with OPC-DRA combination for a mm-wave radio-over-fiber transmission system[C]//2006 IFIP International Conference on Wireless and Optical Communications Networks.New York, USA: IEEE, 2006: 5.

    [9]

    CHEN M L, QU P F, SUN L J, et al. Performance analysis in ultra-long-haul repeaterless microwave photonic link with Raman amplifier[J]. Optoelectronic Technology, 2014, 34(4):283-287(in Chinese).

    [10]

    SU B L. Investigation on quasi-lossless transmission system based on hybrid pumping Raman amplification[J]. Laser Technology, 2017, 41(2):265-269(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201702024.htm

    [11]

    ANIA-CASTAÑÓN J D, TURITSYN S K. Noise and gain optimisation in bi-directionally pumped dispersion compensating amplifier modules[J]. Optics Communications, 2003, 224(1):107-111. http://www.sciencedirect.com/science/article/pii/S0030401803017218

    [12]

    ANIA-CASTAÑÓN J D. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings[J]. Optics Express, 2004, 12(19):4372-4377. DOI: 10.1364/OPEX.12.004372

    [13]

    ELLINGHAM T J, ANIA-CASTAÑÓN J D, IBBOTSON R, et al. Quasi-lossless optical links for broad-band transmission and data processing[J]. IEEE Photonics Technology Letters, 2006, 18(1):268-270. DOI: 10.1109/LPT.2005.862001

    [14]

    ANIA-CASTAÑÓN J D, KARALEKAS V, HARPER P, et al. Simultaneous spatial and spectral transparency using ultra-long fibre laser transmission[C]//33rd European Conference and Exhibition of Optical Communication.Berlin, Germany: Verband der Elektrotechnik, 2007: 1-2.

    [15]

    KARALEKAS V, ANIA-CASTAÑÓN J D, HARPER P, et al. Ultra-long Raman fibre laser transmission links[C]//200911th International Conference on Transparent Optical Networks.New York, USA: IEEE, 2009: 1-4.

    [16]

    CUI Y, XU K, DAI J, et al. Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators[J]. IEEE Photonics Technology Letters, 2012, 24(14):1173-1175. DOI: 10.1109/LPT.2012.2192422

    [17]

    LI J, NING T, PEI L, et al. An improved radio over fiber system with high sensitivity and reduced power degradation by employing a triangular CFBG[J]. IEEE Photonics Technology Letters, 2010, 22(7):516-518. DOI: 10.1109/LPT.2010.2041772

    [18]

    ELREFAIE A F, WAGNER R E, ATLAS D A, et al. Chromatic dispersion limitations in coherent lightwave transmission systems[J]. Journal of Lightwave Technology, 1988, 6(5):704-709. DOI: 10.1109/50.4056

    [19]

    SMITH G H, NOVAK D, AHMED Z. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 1997, 45(8):1410-1415. DOI: 10.1109/22.618444

    [20]

    CORRAL J L, MARTI J, FUSTER J M. General expressions for IM/DD dispersive analog optical links with external modulation or optical up-conversion in a Mach-Zehnder electrooptical modulator[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(10):1968-1976. DOI: 10.1109/22.954816

图(9)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-10
  • 修回日期:  2017-09-19
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回