高级检索

零折射率超材料研究进展

许军, 陈溢杭

许军, 陈溢杭. 零折射率超材料研究进展[J]. 激光技术, 2018, 42(3): 289-294. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.001
引用本文: 许军, 陈溢杭. 零折射率超材料研究进展[J]. 激光技术, 2018, 42(3): 289-294. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.001
XU Jun, CHEN Yihang. Research progress of zero refractive index metamaterial[J]. LASER TECHNOLOGY, 2018, 42(3): 289-294. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.001
Citation: XU Jun, CHEN Yihang. Research progress of zero refractive index metamaterial[J]. LASER TECHNOLOGY, 2018, 42(3): 289-294. DOI: 10.7510/jgjs.issn.1001-3806.2018.03.001

零折射率超材料研究进展

基金项目: 

广东省自然科学基金资助项目 2015A030311018

广东省自然科学基金资助项目 2017A030313035

详细信息
    作者简介:

    许军(1992-), 男, 硕士研究生, 主要从事光学研究

    通讯作者:

    陈溢杭, E-mail:yhchen@scnu.edu.cn

  • 中图分类号: O436.2

Research progress of zero refractive index metamaterial

  • 摘要: 近年来,具有自然界中天然媒质所不具备的特殊性质的电磁超材料在很多领域引起了广泛关注。零折射率超材料(ZRIM)是一种相对介电常数和磁导率为零的特征材料,在光学领域具有很多独特的特征,主要表现在波长拉伸、相位一致以及隧道效应等方面。介绍了几种典型的ZRIM结构以及ZRIM结构中实现的性质,包括无限大波长、均匀场分布等。讨论了ZRIM结构的实现在物理光学中的重要应用,比如定向发射、发射增强、边界态分析以及光的捕获。基于零折射率的性质以及特征的研究,为新器件开发、新光学元件的基础研究提供了相应的参考和指导。
    Abstract: In recent years, electromagnetic metamaterial has attracted wide attention in many fields since it has special characteristics that natural medium does not possess. Zero refractive index metamaterial(ZRIM) is a material with zero permittivity and zero permeability. It has many unique features in the field of optics, such as wavelength stretching, phase consistency and tunnel effect. Several typical ZRIM structures and the properties implemented in the ZRIM structure were introduced, such as infinite wavelength, uniform field distribution, and so on. The important applications of ZRIM structure in physical optics were discussed, for example, directional emission, emission enhancement, boundary state analysis and light capture. The study on the properties and characteristics of ZRIM provides reference and guidance for the development of new devices and the basic research of new optical elements.
  • [1]

    ENGHETA N, ZIOLKOWSKI R W.Metamaterials:physics and engineering explorations[M].Hoboken, USA:John Wiley & Sons Inc., 2006:9-85.

    [2]

    ELEFHERIADES G V, BALMAIN K G.Negative-refraction metamaterials:fundamental principles and applications[M].Hoboken, USA:John Wiley & Sons Inc., 2005:5-55.

    [3]

    CAI W, SHALAEV V M.Optical metamaterials:fundamentals and applications[M].New York, USA:Stanford University, 2010:59-88.

    [4]

    ANDEREGG M, FEUERBACHER B, FITTON B. Optically excited longitudinal plasmons in potassium[J]. Physical Review Letters, 1971, 27(23):1565-1568. DOI: 10.1103/PhysRevLett.27.1565

    [5]

    SPITZER W G, KLEINMAN D, WALSH D. Infrared properties of hexagonal silicon carbide[J]. Physical Review, 1959, 113(1):127-132. DOI: 10.1103/PhysRev.113.127

    [6]

    KOROBKIN D, URZHUMOV Y, SHVETS G.Enhanced near-feld resolution in midinfrared using metamaterials[J].Journal of the Optical Society of America, 2006, B23(3):468-478. http://www.opticsinfobase.org/abstract.cfm?URI=JOSAB-23-3-468

    [7]

    CALDWELL J, LINDSAY L, GIANNINI V, et al.Low-loss, infrared and terahertz nanophotonics using surfacephonon polaritons[J].Nanophotonics, 2015, 4(1):44-68. http://spie.org/x648.xml?product_id=2187019

    [8]

    KIM J. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas[J].Optica, 2016, 3(3):339-346. DOI: 10.1364/OPTICA.3.000339

    [9]

    NAIK G V, KIM J, BOLTASSEVA A. Oxides and nitrides as alternative plasmonic materials in the optical range[J].Optical Materials Express, 2011, 1(6):1090-1099. DOI: 10.1364/OME.1.001090

    [10]

    NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials:beyond gold and silver[J].Advanced Materials, 2013, 25(24):3264-3294. DOI: 10.1002/adma.v25.24

    [11]

    KINSEY N. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths[J]. Optica, 2015, 2(7):616-622. DOI: 10.1364/OPTICA.2.000616

    [12]

    OU J Y, SO J K, ADAMO G, et al. Ultraviolet and visible range plasmonics of a topological insulator[J]. Nature Communications, 2014, 5:5139. DOI: 10.1038/ncomms6139

    [13]

    KHURGIN J B. How to deal with the loss in plasmonics and metamaterials[J]. Nat Nanotechnol, 2015, 10(1):2-6. DOI: 10.1038/nnano.2014.310

    [14]

    BROWN J. Artifcial dielectrics having refractive indices less than unity[J]. IEEE Xplore, 1953, 100(5):51-62.

    [15]

    ROTMAN W. Plasma simulation by artifcial dielectrics and parallel-plate media[J]. Institute of Radio Engineers Transactions on Antennas and Propagation, 1962, 10(1):82-95.

    [16]

    KING R J, TIEL D V, PARK K S. The synthesis of surface reactance using an artifcial dielectric[J].IEEE Transactions on Antennas and Propagation, 1983, 31(3):471-476. DOI: 10.1109/TAP.1983.1143071

    [17]

    GIOVAMPAOLA C D, ENGHETA N. Plasmonics without negative dielectrics[J]. Physical Review, 2016, B93(19):195152. http://arxiv.org/abs/1512.01066

    [18]

    LI Y, LIBERAL I, GIOVAMPAOLA C D, et al.Waveguide metatronics:lumped circuitry based on structural dispersion[J]. Science Advances, 2016, 2(6):e1501790. DOI: 10.1126/sciadv.1501790

    [19]

    MAHMOUD A M, ENGHETA N.Wave-matterinteractions in epsilon-and-mu-near-zero structures[J]. Nature Communications, 2014, 5:5638. DOI: 10.1038/ncomms6638

    [20]

    SILVEIRINHA M, ENGHETA N. Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media[J]. Physical Review, 2007, B75(7):075119. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000015000010000057000001&idtype=cvips&gifs=Yes

    [21]

    VESSEUR E J, COENEN T, CAGLAYAN H, et al. Experimental verification of n=0 structures for visible light[J]. Physical Review Letters, 2013, 110(1):013902. DOI: 10.1103/PhysRevLett.110.013902

    [22]

    PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25):4773-4776. DOI: 10.1103/PhysRevLett.76.4773

    [23]

    MOSES C A, ENGHETA N. Electromagnetic wave propagation in the wire medium:a complex medium with long thin inclusions[J]. Wave Motion, 2001, 34(3):301-317. DOI: 10.1016/S0165-2125(01)00095-6

    [24]

    BELOV P A, TRETYAKOV S A, VⅡTANEN A J. Dispersion and reflection properties of artificial media formed by regular lattices of ideally conducting wires[J]. Journal of Electromagnetic Waves and Applications, 2002, 16(8):1153-1170. DOI: 10.1163/156939302X00688

    [25]

    MASLOVSKI S I, TRETYAKOV S A, BELOV P A. Wire media with negative effective permittivity:a quasi-static model[J]. Microwave and Optical Technology Letters, 2002, 35(1):47-51. DOI: 10.1002/(ISSN)1098-2760

    [26]

    SMITH D R, PADILLA W J, VIER D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18):4184-4187. DOI: 10.1103/PhysRevLett.84.4184

    [27]

    BELOV P A. Strong spatial dispersion in wire media in the very large wavelength limit[J]. Physical Review, 2003, B67(11):113103. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0211204

    [28]

    MAAS R. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths[J]. Nature Photonics, 2013, 7(11):907-912. DOI: 10.1038/nphoton.2013.256

    [29]

    LEWIN L. The electrical constants of a material loaded with spherical particles[J]. Journal of the Institution of Electrical Engineers, 1947, 94(27):65-68. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5298931

    [30]

    O'BRIEN S, PENDRY J B. Photonic band-gap effects and magnetic activity in dielectric composites[J]. Journal of Physics Condensed Matter, 2002, 14(15):4035-4044. DOI: 10.1088/0953-8984/14/15/317

    [31]

    ZHAO Q, ZHOU J, ZHANG F, et al. Mie resonance-based dielectric metamaterials[J]. Materials Today, 2009, 12(12):60-69. DOI: 10.1016/S1369-7021(09)70318-9

    [32]

    WU Y, LI J, ZHANG Z Q, et al. Effective medium theory for magnetodielectric composites:beyond the long-wavelength limit[J]. Physical Review, 2006, B74(8):085111. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000014000009000045000001&idtype=cvips&gifs=Yes

    [33]

    MOITRA P. Realization of an all-dielectric zero-index optical metamaterial[J]. Nature Photonics, 2013, 7(10):791-795. DOI: 10.1038/nphoton.2013.214

    [34]

    HUANG X, LAI Y, HANG Zh, et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials[J]. Nature Materials, 2011, 10(8):582-586. DOI: 10.1038/nmat3030

    [35]

    LI Y. On-chip zero-index metamaterials[J]. Nature Photonics, 2015, 9(11):738-742. DOI: 10.1038/nphoton.2015.198

    [36]

    ZIOLKOWSKI R W. Propagation in and scattering from a matched metamaterial having a zero index of refraction[J]. Physical Review, 2004, E70(2):046608. DOI: 10.1103-PhysRevE.70.046608/

    [37]

    CIATTONI A. Polariton excitation in epsilon-near-zero slabs:transient trapping of slow light[J]. Physical Review, 2013, A87(5):053853. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1303.2057

    [38]

    JAVANI M H, STOCKMAN M I. Real and imaginary properties of epsilon-near-zero materials[J].Physical Review Letters, 2016, 117(10):107404. DOI: 10.1103/PhysRevLett.117.107404

    [39]

    SILVEIRINHA M G, ENGHETA N. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials[J].Physical Review Letters, 2006, 97(15):157403. DOI: 10.1103/PhysRevLett.97.157403

    [40]

    SILVEIRINHA M G, ENGHETA N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends usingεnear-zero metamaterials[J]. Physical Review, 2007, B76(24):245109. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0705.2612

    [41]

    EDWARDS B, ALÙ A, YOUNG M E, et al. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide[J]. Physical Review Letters, 2008, 100(3):033903. DOI: 10.1103/PhysRevLett.100.033903

    [42]

    EDWARDS B, ALÙ A, SILVEIRINHA M G, et al. Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects[J].Journal of Applied Physics, 2009, 105(4):044905. DOI: 10.1063/1.3074506

    [43]

    ALÙ A, SILVEIRINHA M G, ENGHETA N. Transmission-line analysis of epsilon-near-zero-filled narrow channels[J]. Physical Review, 2008, E78(1/2):016604. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0804.3533

    [44]

    MARCOS J S, SILVEIRINHA M G, ENGHETA N. μ-near-zero supercoupling[J]. Physical Review, 2015, B91(19):195112. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230193908/

    [45]

    NGUYEN V C, CHEN L, HALTERMAN K. Total transmission and total reflection by zero index metamaterials with defects[J]. Physical Review Letters, 2010, 105(23):233908. DOI: 10.1103/PhysRevLett.105.233908

    [46]

    HAO J, YAN W, QIU M. Super-reflection and cloaking based on zero index metamaterial[J]. Applied Physics Letters, 2010, 96(10):101109. DOI: 10.1063/1.3359428

    [47]

    ENOCH S. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21):213902. DOI: 10.1103/PhysRevLett.89.213902

    [48]

    ALÙ A. Epsilon-near-zero metamaterials and electromagnetic sources:Tailoring the radiation phase pattern[J]. Physical Review, 2007, B75(15):155410. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000075000015155410000001&idtype=cvips&gifs=Yes

    [49]

    ALÙ A, ENGHETA N. Boosting molecular fluorescence with a plasmonic nanolauncher[J]. Physical Review Letters, 2009, 103(4):043902. DOI: 10.1103/PhysRevLett.103.043902

    [50]

    ENGHETA N, SALANDRINO A, ALÙ A. Circuit elements at optical frequencies:nanoinductors, nanocapacitors, and nanoresistors[J]. Physical Review Letters, 2005, 95(9):095504. DOI: 10.1103/PhysRevLett.95.095504

    [51]

    ENGHETA N. Circuits with light at nanoscales:optical nanocircuits inspired by metamaterials[J]. Science, 2007, 317(5845):1698-1702. DOI: 10.1126/science.1133268

    [52]

    ALÙ A, ENGHETA N. All optical metamaterial circuit board at the nanoscale[J]. Physical Review Letters, 2009, 103(14):143902. DOI: 10.1103/PhysRevLett.103.143902

    [53]

    ALÙ A, ENGHETA N. Optical 'shorting wires'[J].Optics Express, 2007, 15(21):13773-13782. DOI: 10.1364/OE.15.013773

    [54]

    EDWARDS B, ENGHETA N. Experimental verification of displacement-current conduits in metamaterials-inspired optical circuitry[J].Physical Review Letters, 2012, 108(19):193902. DOI: 10.1103/PhysRevLett.108.193902

    [55]

    LIU R, ROBERTSC M, ZHONG Y, et al. Epsilon-near-zero photonics wires[J]. ACS Photonics, 2016, 3(6):1045-1052. DOI: 10.1021/acsphotonics.6b00120

    [56]

    RODRIGUEZ-FORTUNO F J, VAKIL A, ENGHETA N. Electric levitation using -near-zero metamaterials[J].Physical Review Letters, 2014, 112(3):033902. DOI: 10.1103/PhysRevLett.112.033902

    [57]

    LINDELL I V, SIHVOLA A H. Electromagnetic boundary and its realization with anisotropic metamaterial[J]. Physical Review, 2009, E79(2):026604. http://www.ncbi.nlm.nih.gov/pubmed/19391860

    [58]

    RUMSEY V H. Some new forms of Huygens' principle[J]. IEEE Xplore, 1959, 7(5):103-116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/030631277400400403

    [59]

    YAGHJIAN A D, MACI S. Alternative derivation of electromagnetic cloaks and concentrators[J]. New Journal of Physics, 2007, 10(11):115022. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0710.2933

    [60]

    von NEUMANN J, WIGNER E. über merkwürdige diskrete eigenwerte[J].Physikalische Zeitschrift, 1929, 30:467-470.

    [61]

    CAPASSO F, SIRTORI C, FAIST J, et al. Observation of an electronic bound state above a potential well[J]. Nature, 1992, 358(6387):565-567. DOI: 10.1038/358565a0

    [62]

    DEVANEY A J, WOLF E. Radiating and nonradiating classical current distributions and the felds they generate[J]. Physical Review, 1973, D8(4):1044-1047. DOI: 10.1103/PhysRevD.8.1044

    [63]

    MARENGO E A, ZIOLKOWSKI R W. On the radiating and nonradiating components of scalar, electromagnetic and weak gravitational sources[J].Physical Review Letters, 1999, 83(17):3345-3349. DOI: 10.1103/PhysRevLett.83.3345

    [64]

    MARINICA D C, BORISOV A G, SHABANOV S V. Bound States in the continuum in photonics[J]. Physical Review Letters, 2008, 100(18):183902. DOI: 10.1103/PhysRevLett.100.183902

    [65]

    LEE J. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs[J]. Physical Review Letters, 2012, 109(6):067401. DOI: 10.1103/PhysRevLett.109.067401

    [66]

    ERENTOK A, ZIOLKOWSKI R W. A hybrid optimization method to analyze metamaterial-based electrically small antennas[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3):731-741. DOI: 10.1109/TAP.2007.891553

    [67]

    LIBERAL I, ENGHETA N. Nonradiating and radiating modes excited by quantum emitters in open epsilon-near-zero cavities[J].Science Advances, 2016, 2(10):e1600987. DOI: 10.1126/sciadv.1600987

  • 期刊类型引用(8)

    1. 孟惠,王明军,宁铎,任神河. 拉盖尔-高斯光束在拓扑绝缘体分层介质薄膜的相位分布. 激光与光电子学进展. 2022(05): 306-311 . 百度学术
    2. 杜娇,段美玲,张秀清,赵慧芳,崔文丽. 部分相干光束在生物组织中的传输行为. 光电子·激光. 2022(09): 1001-1008 . 百度学术
    3. 位毅帆. 空心光束的产生及其在现代光学中的应用. 内江科技. 2019(02): 63+32 . 百度学术
    4. 靳龙,张兴强. 圆形周期介质内艾里光束的传输特性. 激光技术. 2019(03): 432-436 . 本站查看
    5. 黄石明,聂建业,张蓉竹. 偏振方向对涡旋光束产生的影响. 强激光与粒子束. 2018(07): 15-19 . 百度学术
    6. 汪慧超,胡阿健,陈培锋. 空间光调制器产生拉盖尔-高斯光束方法研究. 激光技术. 2017(03): 447-450 . 本站查看
    7. 李瑶,莫伟成,杨振刚,刘劲松,王可嘉. 利用超表面天线阵列产生太赫兹涡旋光束. 激光技术. 2017(05): 644-648 . 本站查看
    8. 张虹霞,严云富. 无源光接入网络中前向纠错编码技术. 激光杂志. 2017(10): 152-155 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  12
  • 被引次数: 22
出版历程
  • 收稿日期:  2017-09-29
  • 修回日期:  2017-10-29
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回