Research of beam combination and focusing system of laser diode applied in ceramic welding
-
摘要: 为了解决石油输送管道Al2O3陶瓷内衬管的连接问题,研制了专用的半导体激光光源用于陶瓷激光焊接。实验研究了陶瓷激光焊接所需要的半导体激光工艺参量及光束要求,采用单管空间合束、偏振合束、波长合束以及菲涅耳聚焦系统输出等方式,研制了光场分布均匀的半导体激光陶瓷焊接系统。结果表明,所设计半导体激光器偏振合束输出功率为384W,合束效率达到96.62%,经波长合束后输出功率可以超过800W,聚焦系统输出光斑均匀度为93.85%。该系统可以成功应用于不同场合的陶瓷焊接生产中,满足2mm厚度Al2O3陶瓷激光焊接要求。Abstract: In order to solve the connection problem of Al2O3 ceramic lined pipe in petroleum pipeline, a special semiconductor laser light source was developed for ceramic laser welding. The technological parameters and beam requirements for ceramic laser welding were investigated experimentally. By means of single tube space beam combination, polarization beam combination, wavelength combination and Fresnel focusing system, a semiconductor laser ceramic welding system with uniform light distribution field was developed. The results show that, the output power of the polarization combination module is 384W, the beam combination efficiency is up to 96.62%. After wavelength combination, the output power can exceed 800W, and the output spot uniformity of focusing system is 93.85%. The system can be applied to ceramic welding in different occasions, and meet the requirements of Al2O3 ceramic laser welding with 2mm thickness.
-
-
Table 1 Output power of polarization combination and the combining efficiency under different drive currents
current of LD1 /A current of LD2 /A output power aftercombination /W loss of power/W combining efficiency/% 1.04 0.98 19.03 0.34 98.24 1.66 1.49 38.19 0.67 98.28 2.91 2.50 77.31 1.37 98.26 4.91 3.57 117.40 2.12 98.23 5.37 4.59 157.10 2.84 98.22 6.64 5.62 195.90 3.66 98.17 8.21 7.43 291.20 7.85 97.37 11.96 11.85 384.10 13.42 96.62 -
[1] WANG X Zh, WANG J, WANG H. Performance and structural evolution of high-temperature organic adhesive for joining Al2O3 ceramics[J]. International Journal of Adhesion and Adhesives, 2013, 45(2):1-6. http://www.sciencedirect.com/science/article/pii/S0143749613000614
[2] LE M T, KIM D J, LEE J R, et al. Properties of ceramic layer formed by centrifugal thermit reaction with silicon sludge replacement[J].Materials Transactions, 2008, 49(8):1868-1873. DOI: 10.2320/matertrans.MRA2008109
[3] ZHENG X J. Investigation on laser welding technology of Al2O3-lined ceramic[D]. Wuhan: Huazhong Univerisity of Science and Technology, 2016: 1-11(in Chinese).
[4] BORNER F D, LIPPMANN W, HURTADO A. Laser-joined Al2O3, and ZrO2 ceramics for high-temperature applications[J]. Journal of Nuclear Materials, 2010, 405(1):1-8. DOI: 10.1016/j.jnucmat.2010.07.020
[5] HUANG R K, CHANN B, TAYEBATI P. Direct diode lasers for industrial sheet metal cutting and welding[C]//Photonics Conference (IPC), 2014 IEEE. New York, USA: IEEE, 2014: 232-233.
[6] HUANG R K, CHANN B, BURGESS J, et al. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers[J]. Proceedings of the SPIE, 2012, 8241:824102. DOI: 10.1117/12.907161
[7] DORSCH F, DAIMINGER F X, HENNEG P, et al. 2kW CW fiber-coupled diode laser system[J]. Proceedings of the SPIE, 2000, 3889:45-53. DOI: 10.1117/12.380893
[8] WU Zh N, XIE J R, YANG Y N. Design and implementation of beam array shaping for high power semiconductor lasers[J]. Laser Technology, 2017, 41(3):416-420(in Chinese). http://www.jgjs.net.cn/EN/Y2017/V41/I3/416
[9] ZHU H B, ZHANG J Sh, MA J, et al. 10kW CW diode laser cladding sources[J]. Optics and Precision Engineering, 2013, 21(4):829-834(in Chinese). DOI: 10.3788/OPE.
[10] MALCHUS J, KRAUSE V, KOESTERS A, et al. A 25kW fiber-coupled diode laser for pumping applications[J]. Proceedings of the SPIE, 2014, 8965:89650B. DOI: 10.1117/12.2039110
[11] HUANG R K, CHANN B, BURGESS J, et al. Teradiode's high brightness semiconductor lasers[J]. Proceedings of the SPIE, 2016, 9730:97300C. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2502185
[12] AVILOV V V, GUMENYUK A, LAMMERS M, et al. PA position full penetration high power laser beam welding of up to 30mm thick AlMg3 plates using electromagnetic weld pool support[J]. Science and technology of Welding & Joining, 2012, 17(2):128-133. DOI: 10.1179/1362171811Y.0000000085
[13] ZHU H B. Study on high power single emitter diode laser combination and fiber coupling[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012: 37-47(in Chinese).
[14] BACHMANN F. High power diode lasers-technology and applications[M]. New York, USA:Springer Science, 2007:1-180.
[15] LI P, WU H L, YANG P H, et al. General design method and optical efficiency of the solar concentrator by Fresnel lens[J]. Journal of Wuhan University of Technology, 2010, 32(6):62-66(in Chinese).
[16] ZHANG L. Design of Fresnel concentrating optical system with high homogeneity of energy distribution[D]. Hangzhou: China Jiliang University, 2013: 6-11(in Chinese).
[17] LIU Zh H, SHI Zh D, YANG H, et al. Homogenization of semiconductor laser using diffractive micro-lens array[J]. Infrared and Laser Engineering, 2014, 43(7):2092-2096(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWYJ201407009.htm
-
期刊类型引用(4)
1. 禹伶洁. 激光合束专利技术现状及进展. 中国新技术新产品. 2020(05): 139-140 . 百度学术
2. 彭浩,邹锋,覃贝伦,姚雨辰. 基于双焦距准直镜的半导体激光合束系统的研究. 应用激光. 2020(06): 1110-1114 . 百度学术
3. 王敏,王青,朱日宏,马骏,陈帆,张建云,刘戴明. 光谱合束二向色镜反射率及合束效率仿真研究. 激光技术. 2019(03): 421-426 . 本站查看
4. 张定梅. 基于半导体环形激光器的光反馈动力学研究. 激光技术. 2019(06): 789-794 . 本站查看
其他类型引用(2)