-
实验中所用Al2O3陶瓷3维尺寸为28mm×21mm×625μm,Al2O3的质量分数为0.96,能带宽度约为9.1eV,常用物理性能见表 1。
Table 1. Physical parameters of soda-lime glass
properties reference value melting point 2072℃ boiling point 2977℃ density 3.72g/cm3 heat capacity 880J/(kg·K) elasticity modulus 74GPa shear modulus 300GPa coefficient of thermal expansion 8.2×10-6K-1 -
实验中采用的激光加工设备为多功能皮秒激光微加工系统,主要由多波段全固态皮秒激光器、微加工光路系统、精密机械系统、定位系统和计算机控制系统构成。激光器是德国Edgewave公司生产的Nd:YVO4皮秒激光器,输出波长1064nm,光束质量因子M2≤1.3。激光输出平均功率为0W~80W,脉冲宽度10ps,脉冲重复频率为200kHz~20MHz,出口光斑直径3.0mm,经透镜聚焦后的焦点光斑直径约为20.0μm。使用振镜扫描配合加工平台X-Y-Z 3维运动方式,可实现对70mm×70mm范围内任意复杂图形快速加工,最高扫描速度为9600mm/s。加工系统示意图如图 1所示。
-
实验研究激光主要参量(单脉冲能量和扫描次数)对微孔直径、锥度和重铸层厚度影响规律以及皮秒激光在不同介质中与Al2O3陶瓷的作用机理。钻微孔目标直径D=200μm,钻孔方式采取单层多次同心圆填充旋切钻孔法,填充间距固定为10μm。激光聚焦平面位于Al2O3陶瓷表面上,焦点处有效光斑中心位于同心圆上。在空气介质中加工只需将Al2O3陶瓷样品放在加工平台上直接按设定参量进行加工,而水辅助激光钻孔则需要支撑和固定装置将Al2O3陶瓷固定于水下。
微孔锥度是陶瓷微孔在材料厚度方向上的倾角θ,如图 2所示。锥度T计算公式如下:
$ T\left( \theta \right){\rm{ = }}\arctan \left( {\frac{{{D_{{\rm{ent}}}} - {D_{{\rm{ext}}}}}}{{2t}}} \right) $
(1) 式中,θ为倾角,单位是°;Dent和Dext分别为正、反面孔径,单位均是μm;t为Al2O3陶瓷厚度,单位是μm。
重铸层主要由于材料熔化重新冷却固化在内壁上,如图 3所示。计算公式如下:
$ {\zeta _{{\rm{HAZ}}}} = \frac{{{D_{{\rm{HAZ}}}} - {D_0}}}{2} $
(2) 式中,ζHAZ是重铸层厚度,单位是μm;DHAZ是包括重铸层在内微孔直径,单位是μm;D0是材料完全去除时微孔直径,单位是μm。
-
激光束在水中传输时,水对激光的吸收作用与散射作用同时存在。激光束能量的衰减主要是纯净水与水中杂质对激光的吸收引起,对激光束的扩散影响不大。激光在纯净水中的传输特性如图 4所示。在水辅助激光钻孔过程中,水能够吸收一部分激光能量并降低加工效率。水吸收的激光能量可以由Beer-Lambert定律[14]计算得到,如下式所示:
$ {I_x}\left( \lambda \right) = {I_0}\left( \lambda \right)\exp \left( {\frac{{ - x}}{L}} \right) $
(3) 式中,I0(λ)是入射前激光初始辐照度;Ix(λ)是在液体中传输路程为x后的激光辐照度;L是激光在水中的吸收长度,即激光被完全吸收穿过的溶液长度。
因此可以很容易看出, 波长λ=1064nm激光对应纯净水吸收长度L≈15mm。水深h=1mm时,吸收率δ≈h/L=6.7%;水深h=2mm时, 吸收率δ≈13.3%。而散射作用主要使激光束扩散、光斑变大,对激光束能量衰减影响较弱。深度为x处的激光光斑大小S计算公式[15]如下:
$ S\left( x \right) = {S_0} = \exp \left( {\rho \left\langle {{\sigma _{\rm{s}}}} \right\rangle x} \right) $
(4) 式中,ρ〈σs〉是水质参量,S0是初始光斑直径,σs是平均散射截面。
水辅助激光无重铸层钻孔Al2O3陶瓷实验研究
Experimental study about water-assisted laser drill on Al2O3 ceramics without recast layer
-
摘要: 为了解决传统加工过程中重铸层无法消除的问题,采用超快皮秒激光创新性地在水介质中对Al2O3陶瓷进行皮秒激光钻孔实验,并与空气中钻孔结果进行对比,研究了皮秒激光主要参量如单脉冲能量、扫描次数等对陶瓷微孔的孔径、锥度和重铸层厚度的影响规律,并分析讨论不同介质中皮秒激光与Al2O3陶瓷相互作用机理及材料去除机制。结果表明,在水介质中激光钻孔直径增加约35μm、微孔锥度降低至1.04°并可获得无重铸层钻孔效果;激光作用过程中水的存在会引起空泡作用、吸收作用和运输作用,有效防止了去蚀材料二次黏附,消除了重铸层和降低了微孔锥度,提升了微孔质量。该研究阐述了水辅助激光钻孔的具体影响状况并加深了对水辅助的影响机理理解。Abstract: In order to solve the problem that recastation layer can not be eliminated in traditional process, ultrafoot picosecond laser was used to do the drilling experiment of Al2O3 ceramics in water medium. Compared with the drilling results in the air, the influences of main parameters such as single pulse energy and scanning frequency on pore size, taper and thickness of ceramic micro pores were analyzed. Interaction mechanism between picosecond laser and Al2O3 ceramics and material removal mechanism with different media were analyzed and discussed. The results show that, the diameter of laser drilling in water medium increases by about 35μm, micropore taper reduces to 1.04° and the effect of no reclamation layer drilling can be obtained. The presence of water in the process of laser drilling can cause vacuolization, absorption and transportation.It can effectively prevent the secondary adhesion of erosion material, eliminate re-cast layer and reduce micro-hole taper and improve the quality of micro-porous. The study describes the specific impact of water-assisted laser drilling and deepens the understanding of the mechanism of water-assisted effects.
-
Key words:
- laser technique /
- water-assisted machining /
- laser drilling /
- Al2O3 ceramics
-
Table 1. Physical parameters of soda-lime glass
properties reference value melting point 2072℃ boiling point 2977℃ density 3.72g/cm3 heat capacity 880J/(kg·K) elasticity modulus 74GPa shear modulus 300GPa coefficient of thermal expansion 8.2×10-6K-1 -
[1] ZHU M X, XU X, LI Y M, et al. Research status on metal-toughed alumina ceramics[J]. Chinese Ceramics, 2012, 148(12):10-13(in Chinese). [2] ZHANG F L, FENG D J, SHI J C, et al. Rotary ultrasonic machining technology of ceramic material[J]. Electromachining & Mould, 2001(1):1-5(in Chinese). [3] QI L T. Ultra-short pulsed laser microfabrication technology[M]. Harbin:Harbin Engineering University Press, 2012:22-25(in Chin-ese). [4] SCHULZ W, EPPELT U, POPRAWE R. Review on laser drilling Ⅰ. Fundamentals, modeling, and simulation[J]. Journal of Laser Applications, 2013, 25(1):12006. doi: 10.2351/1.4773837 [5] ZHANG F, DUAN J, ZENG X, et al. UV laser microprocessing and post chemical etching on ultrathin Al2O3 ceramic substrate[J]. Journal of the European Ceramic Society, 2011, 31(9):1631-1639. doi: 10.1016/j.jeurceramsoc.2011.03.034 [6] ADELMANN B, HELLMANN R. Rapid micro hole laser drilling in ceramic substrates using single mode fiber laser[J]. Journal of Materials Processing Technology, 2015, 221(1):80-86. [7] HSU J, LIN W, CHANG Y, et al. Continuous-wave laser drilling assisted by intermittent gas jets[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1/4):449-459. [8] ZHANG F. Study on UV laser microprocessing technology and mechanism for electronic materials[D]. Wuhan: Huazhong University of Science and Technology, 2012: 87-102(in Chinese). [9] ZHANG G, LIANG Y. Study on laser drilling alumina ceramic of recast layer research[J]. Journal of ShenYang Institute of Technology, 2001, 20(2):1-4(in Chinese). [10] LI C, LEE S, NIKUMB S. Femtosecond laser drilling of alumina wafers[J]. Journal of Electronic Materials, 2009, 38(9):20116-20121. [11] WANG X C, ZHENG H Y, CHU P L, et al. Femtosecond laser drilling of alumina ceramic substrates[J]. Applied Physics, 2010, A101(2):271-278. [12] KONG L R, ZHANG F, DUAN J, et al. Research of water-assisted laser etching of alumina ceramics[J]. Laser Technology, 2014, 38(3):330-334(in Chinese). [13] TSAI C, LI C. Investigation of underwater laser drilling for brittle substrates[J]. Journal of Materials Processing Technology, 2009, 209(6):2838-2846. doi: 10.1016/j.jmatprotec.2008.06.057 [14] KRUUSING A. Underwater and water-assisted laser processing:Part 1-general features, steam cleaning and shock processing[J]. Optics and Lasers in Engineering, 2004, 41(2):307-327. doi: 10.1016/S0143-8166(02)00142-2 [15] LIU Y Zh, ZHU Y T, ZHU G X, et al. Study of underwater spot spread of collimated laser beam[J]. Chinese Journal of Lasers, 2001, 28(7):617-620(in Chinese).