-
V型谐振腔结构如图 1所示。球面折叠镜M13的曲率半径为R13,端面反射镜M11和M12的曲率半径分别为R11,R12,折叠角为θ。Nd:YAG激光晶体置于其中一臂[7]。
在不考虑热透镜效应(理想状况)并忽略像散的条件下,将折叠镜等效为一个薄透镜[8],如图 2所示。
为了简化分析,仅将折叠镜等效为子午面上的薄透镜M13,等效带来的像散可加入一定厚度的布儒斯特片消除[9],等效透镜的焦距F为:
$ F = {R_{13}}{\rm{cos}}\theta /2 $
(1) 对于这类谐振腔,采用KOGELNIK提出的g*参量等价腔分析法,即按照透镜成像原理,将含有透镜的共轴球面腔等价为不含透镜的空腔[10],如图 2所示。
薄透镜M13将谐振腔分割为两个子腔,左侧子腔长为L11,右侧子腔长为L12,总腔长为L1。当左侧端面镜通过透镜在右侧成像时,像与右侧端面镜构成等价空腔,设像M11′的曲率半径为R11′,像方子腔长为L11′,根据透镜成像原理解得:
$ \left\{ \begin{array}{l} {R_{11}}^\prime = \frac{{{R_{11}}}}{{\left( {\frac{{{L_{11}}}}{F}-1} \right)\left( {\frac{{{L_{11}}-{R_{11}}}}{F}-1} \right)}}\\ {L_{11}}^\prime = \frac{1}{{{F^{ - 1}} - {L_{11}}^{ - 1}}}\\ {L_1}^\prime = {L_{12}} - {L_{11}}^\prime \end{array} \right. $
(2) 式中,L1′为等效空腔腔长。此处引入g*参量,其定义与共轴球面腔的g参量[11-12]一致,即等效空腔的g1*参量和稳定性条件为:
$ \begin{array}{l} \\ \left\{ \begin{array}{l} {g_{11}}^* = 1-\frac{{{L_1}^\prime }}{{{R_{11}}^\prime }}\\ {g_{12}}^* = 1-\frac{{{L_1}^\prime }}{{{R_{12}}}} \end{array} \right., \left( {0 < {g_{11}}^*{g_{12}}^* < 1} \right) \end{array} $
(3) (3) 式仅表示右侧子腔的稳定条件,不能用来求解左侧子腔稳定性[13],但对应的左侧子腔等效参量和稳定性条件同样可通过上述成像原理解得。如图 2所示,右侧端面镜通过透镜在左侧成像,像与左侧端面镜构成的g2*参量等价空腔的腔长为L1″,等价腔右端面镜M12′的曲率半径为R12′。
-
热透镜效应下的V型谐振腔,等效于V型等价腔内增加一个焦距动态变化的薄透镜,形成腔内透镜组,如图 3所示。图中, M23为等效热透镜,M24为折叠镜等效透镜。对于这类谐振腔,采用多元件光学谐振腔等价腔分析法[14-15],即引入光学间隔参量Δ,利用牛顿公式和高斯公式依次对两透镜的成像关系进行分析,将含有透镜组的共轴球面腔按照成像原理等价为不含透镜的空腔。
Figure 3. Schematic diagram of g′ and g″ equivalent cavity in V-type resonant cavity under thermal effect
图 3所示为热效应下V型腔的g′, g″等价空腔。图中端面反射镜M21, M22的曲率半径分别为R21, R22,透镜M23, M24的焦距分别为f1, f2,透镜组将谐振腔分割为两个子腔,左侧子腔腔长为L21,右侧腔长为L22,两透镜间距为d,光学间隔为Δ。
当左侧端面镜通过透镜组在右侧成像时,其像与右侧端面镜构成等价共轴球面空腔,如图 3所示。设像M21′的曲率半径为R21′,像方子腔长为L21′,根据光学系统成像原理可解得曲率半径R21′和等价空腔的腔长L2′为:
$ \begin{array}{l} {R_{21}}^\prime = \frac{{{f_1}^2{f_2}^2{R_{21}}}}{{\left( {{L_{21}}\mathit{\Delta + }{\mathit{f}_1}d-{f_1}{f_2}} \right)\left( {{L_{21}}\mathit{\Delta + }{\mathit{f}_1}d-{f_1}{f_2}-{R_{21}}\mathit{\Delta }} \right)}}\\ {L_2}^\prime = \frac{{{f_1}{f_2}\left( {d + {L_{21}} + {L_{22}}} \right) - {L_{21}}{L_{22}}\mathit{\Delta - d}\left( {{f_1}{L_{22}} + {f_2}{L_{21}}} \right)}}{{{f_1}{f_2} - {L_{21}}\mathit{\Delta - d}{\mathit{f}_1}}} \end{array} $
(4) 式中,光学间隔Δ=f1+f2-d。则根据共轴球面腔的稳定性条件可知:
$ \left\{ {\begin{array}{*{20}{l}} {{g_{21}}^\prime = 1 - \frac{{{L_2}^\prime }}{{{R_{21}}^\prime }}}\\ {{g_{22}}^\prime = 1 - \frac{{{L_2}^\prime }}{{{R_{22}}}}} \end{array}} \right.,\left( {0 < {g_{21}}^\prime {g_{22}}^\prime < 1} \right) $
(5) 当满足上述条件时,图 3所示B线往右的子腔稳定,但不能表示A线往左的子腔稳定性。对应的左侧子腔等效参量和稳定性条件可按照相同的透镜组成像原理解得,如图 3所示,右侧端面镜通过透镜组在左侧成像,像与左侧端面镜构成的g″参量等价腔的腔长为L2″,右端面镜M32″的曲率半径为R22″。
基于V型谐振腔的热稳定性分析
Analysis of thermal stability based on V-type folded cavity
-
摘要: 为了提高V型谐振腔的热稳定性,采用了图解分析法,将V型折叠腔等效为腔内含有一个透镜的共轴球面腔。同时考虑到晶体热透镜效应,结合多元件光学谐振腔的等价腔分析法,将等效后腔内含透镜组的多元件球面腔近似等价为腔内不含透镜的共轴球面空腔。对V型腔等价后的共轴球面空腔的稳定性进行了理论计算和仿真分析。结果表明,当总腔长为75mm、折叠角为0.15π左右时,谐振腔具有最宽的热稳定范围;此时若增益介质与折叠镜的间距为28mm,则谐振腔能适应的最小热透镜焦距可达12mm。这一结果体现了谐振腔关键参量对热稳定性的重要影响,对激光腔型稳定性的优化设计具有一定的指导意义。Abstract: In order to improve the thermal stability of V-type resonant cavity, based on graphic analysis, a simple V-type folded cavity was transformed into a coaxial spherical cavity with a thin lens. At the same time, considering the thermal effect of lens and combining with equivalent cavity analysis method of multi element optical resonator, the V-type folded cavity with lens group was transformed into a coaxial spherical cavity with no lens in the cavity. And the thermal stability of coaxial spherical cavity with no lens was calculated and analyzed. The results show that, the cavity has the widest range of thermal stability when the total cavity is 75mm and the fold angle is 0.15π. When the interval between the gain medium and folding mirror is 28mm, the focal length of the minimum thermal lens being suitable for the cavity can reach 12mm. The study shows that the key parameters of the cavity are important to thermal stability, and it has guiding significance for the optimization design of laser cavity stability.
-
Key words:
- optical design /
- V-type folded cavity /
- equivalent cavity analysis /
- cavity stability
-
-
[1] WU Y, LONG X L, JIAO Zh X, et al. Optimal design of high power Nd:YAG laser with thermal lens compensation[J]. Laser Technology, 2015, 39(3):377-380(in Chinese). [2] MAGNI V. Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability[J]. Applied Optics, 1986, 25(1):107-110. doi: 10.1364/AO.25.000107 [3] CHEN X Y, WANG D, WANG Ch, et al. Effect of Nd3+ doping concentration on the output characteristics of the no water cooling Nd:YAG laser[J]. Infrared and Laser Engineering, 2011, 40(4):817-821(in Chinese). [4] HOMMERICH U, EILERS H, STRAUSS E, et al. Optically induced lensing effects in Nd3+-doped laser glass measured by photothermal beam-deflection spectroscopy[J]. Optics Letters, 1992, 17(3):213-215. doi: 10.1364/OL.17.000213 [5] XUE J W, FANG Y J, XIE H J, et al. Design of three-mirror-folded cavity with two Rayleigh length.Laser Technology, 2017, 41(1):51-55(in Chinese). [6] ZHANG L K, GU H D, ZHENG Ch Q, et al. Analysis and design of the thermal-lens-insensitive cavity in long-pulse green lasers. Laser Technology, 2011, 35(2):167-169(in Chinese). [7] SHAN X Y, WEI X Y, WU N L, et al. Study on the beam quality of diode pumped Yb:YAG thin disk laser and the intracavity frequency doubling in V-type resonator[J]. Chinese Journal of Quantum Electronics, 2004, 21(5):587-591(in Chinese). [8] WAN D P, WANG Y M, GUI ZH X, et al. A new method for stability analysis and design of laser folded cavity[J]. Chinese Journal of Lasers, 2007, 34(9):1217-1221(in Chinese). [9] LI F, BAI Y, BAI J T, et al. A thermal dynamic graphic analysis of V type solid laser resonator[J]. Journal of Yanbian University(Natural Science Edition), 2006, 32(3):176-180(in Chinese). [10] KOGELNIK H. Imaging of optical modes-resonators with internal lenses[J]. Bell Labs Technical Journal, 1965, 44(3):455-494. doi: 10.1002/bltj.1965.44.issue-3 [11] ZHOU B K. Laser principle[M]. 7th ed.Beijing:National Defence Industry Press, 2014:57-69(in Chinese). [12] XU R Q, LIU Y A, WANG J. Design of high output power thermal stable resonator[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 1999, 13(4):29-32(in Chinese). [13] CAO Q, ZHANG W J. Equivalent cavity of multi-element resonant cavity[J]. Acta Optica Sinica, 1994, 14(2):135-139(in Chinese). [14] LÜ B D, WEI G H. The equivalent resonator optical resonators analysis method[J]. Journal of Sichuan University (Natural Science Edition), 1985, 22(4):53-60(in Chinese). [15] LÜ B D. Fundamental mode dynamic stabilizing telescope resonator[J]. Acta Optica Sinica, 1987, 7(2):11-17(in Chinese). [16] YU B H, NI Y J, LOU G Y. Thermal lens effect of Nd:YAG laser and its influence on laser output[J]. Journal of Xinyang Normal University (Natural Science Edition), 2004, 17(2):166-169(in Chinese). [17] ZHU S Q, FU Q K, LI A M, et al. Design of dynamic thermal stable resonator for LD pumped Nd:GdVO4 blue laser[J]. Opto-Electronic Engineering, 2010, 37(11):43-47(in Chinese). [18] WANG X J. Thermal stability of parallel planar resonators containing heat thick lenses[J]. Chinese Journal of Lasers, 1985, 12(5):12-16(in Chinese). [19] HUANG Zh M, REN Zh Y, BAI J T. 200W double resonator combined cavity quasi continuous green laser[J]. Acta Photonica Sinica, 2009, 38(6):1331-1335(in Chinese).