-
要求准直波前发生器产生大于∅50mm的准直平行光,课题设计的准直波前发生器主要通过将单模He-Ne激光准直放大来获得准直波前,理论上放大倍率越大,出射波前就越接近标准平面波,但是过大的放大倍率会造成系统比较复杂,精度难以保证,因此选择采用二级放大的方式,每级放大10倍,并且要求扩束系统波前质量均方根值(root mean square, RMS)小于λ/30,λ为He-Ne激光波长。这样,经过二级扩束准直系统后的He-Ne激光光束被放大100倍,可以看成标准平面波面。
-
分光镜的作用是将激光器输出高能量1055nm激光与633nm测试光分开,要求分光镜具有低膨胀系数,膜层激光损伤阈值高且透射波前较小。根据课题指标及现场测试要求,设计分光镜参量为:口径为∅100mm;材料为光学熔石英;膜层镀1055nm波长高反膜,膜层抗损伤阈值不小于300J/cm2;镀膜后透射波前峰谷值(peak-to-valley, PV)小于λ/10@633nm。
-
中继匹配系统的作用是将大尺寸待测波前高保真的转换至小口径波前传感器测量面上,整个系统类似于开普勒望远系统,如图 2所示。物面为透镜L1的前焦面,透镜L1的焦距为f1,像面为透镜L2的后焦面,透镜L2的焦距为f2,从物面到像面的光线变换矩阵为:
$ \left[\begin{array}{l} {R_i}\\ {\mathit{\Theta }_i} \end{array} \right] = \left[{\begin{array}{*{20}{c}} M&0\\ 0&{1/M} \end{array}} \right]\left[\begin{array}{l} {r_i}\\ {\theta _i} \end{array} \right] $
(1) 式中,M为系统放大率; ri,θi分别代表物面第i条光线与光轴的距离和角度; Ri,Θi分别代表第i条光线在像面位置与光轴的距离和角度。从变换矩阵可知,经过系统前后光线满足关系,Ri=Mri和Θi=θi/M,由此可知, 处在像面的波前只是物面波前按系统放大率放大的结果,只要控制系统的像差,便可实现主镜前焦面的波前将无畸变的变换至次镜后焦面上。
课题组使用的H-S波前传感器参量为:微透镜阵列数44×33;测量口径6.19mm×4.75mm。要实现测量口径达到∅50mm的技术指标,设计中继匹配系统参量为:入瞳口径∅58mm;倍率11×;波像差λ/30(RMS)。具体设计结果如表 1所示。
Table 1. Structure data of Keplerian resizing telescope
surface No. radius/mm thickness/mm aperture radius/mm glass 1 275.4 7.2 30 H-K9L 2 -179.47 6.0 30 ZF1 3 -570.2 472.91 30 AIR 4 28.18 1.5 6 ZF1 5 12.942 3.1 6 H-K9L 6 -41.30 0 6 AIR -
课题组使用如图 3所示校准装置对H-S波前传感器进行校准。校准方法为:准直光经反射镜后,用被校波前传感器测量。精密调节波前传感器使波前传感器在不去倾斜条件下,测量结果最小。控制电动旋转台使平面反射镜转动,经平面反射镜反射的准直光相对被校波前传感器为一倾斜波前,倾斜波前PV值、RMS值由光斑尺寸和倾斜角确定。由自准直仪测量出倾斜波前倾斜角,计算出倾斜波前PV值、RMS值标准值,将被校波前传感器测量值与标准值进行比对来完成校准。校准结果为,H-S波前传感器波前畸变RMS值扩展测量不确定度为30nm(k=2,k为包含因子)。
-
倍率标定实验装置如图 4所示。具有固定尺寸的物被准直光照明,用CCD相机接收物经中继匹配系统后的像,对接收像进行数字图像处理,获得精确的像尺寸,根据物像尺寸获得整个系统的倍率。实验时用游标卡尺作为物,调节游标卡尺读数为40mm,用CCD相机接收到的像如图 5所示。中继匹配系统倍率标定结果为10.99倍。
-
测量装置波前畸变测量不确定度主要来源包括准直光源波前畸变、中继匹配系统波前畸变及H-S波前传感器测量不确定度。H-S波前传感器已通过校准装置校准,则利用波前传感器直接测量准直光经中继匹配系统后波前畸变,结果将代表整个装置的波前畸变测量不确定度。由表 2所示的测量数据可知,测量装置波前畸变RMS值扩展测量不确定度为0.06λ(k=2)。
Table 2. Structure data of Keplerian resizing telescope
test number RMS/λ PV/λ 1 0.053 0.289 2 0.054 0.275 3 0.055 0.319 4 0.057 0.311 5 0.056 0.307 6 0.058 0.337 7 0.061 0.382 8 0.054 0.325 9 0.056 0.359 10 0.057 0.266 -
由装置测量原理可知,装置等效焦距测量不确定度来源主要包括以下三部分:波前传感器曲率测量误差引入测量不确定度,此项由装置波前畸变测量误差引起;中继匹配系统倍率标定引入的测量不确定度;测量重复性引入的测量不确定度。
-
由3.1节中的分析可知,装置波前畸变测量不确定度为0.06λ,将其全部作为波前曲率项误差。当待测焦距为120m时,经中继匹配系统、波前传感器上对应曲率半径约为1m,波前RMS值变化0.06λ对应曲率半径变化85mm,由此引入的测量不确定度分量可评估为:
$ {u_1} = 4.0\% $
(2) -
游标卡尺分辨率为0.02mm,CCD采集图像边缘标定误差评估为3个像素,由此引入的测量不确定度分量可评估为:
$ {u_2} = 0.5\% $
(3) -
根据实际测量结果(120m焦距),由A类不确定度评定方法评定,测量重复性引入的测量不确定度评估为:
$ {u_3} = 1\% $
(4) -
各不确定度分量彼此无关,故合成标准测量不确定度为:
$ {u_{\rm{c}}} = \sqrt {u_1^2 + u_2^2 + u_3^2} = 4.2\% $
(5) -
扩展不确定度按下式计算:
$ U = k{u_{\rm{c}}} = 8.4\% $
(6) 式中,U为扩展测量不确定度;k为包含因子,取k=2;uc为合成标准测量不确定度。
-
测量装置研制完成后,需完成测量不确定度比对验证实验,课题设计了两套实验比对装置。用测量装置分别测量40m和60m标准长焦单透镜焦距,将测量结果与标准值比对,如图 6所示。利用长焦发生器产生120m长焦距,分别用泰伯-莫尔法长焦测焦仪和激光材料热效应测量装置测量同一焦距值,比对测量结果,如图 7所示。测量结果需满足比对公式:
$ {E_{\rm{n}}} = \left| {\frac{{{F_1}-{F_2}}}{{\sqrt {U_1^2 + U_2^2} }}} \right| \le 1 $
(7) 式中,En为归一化偏差;F1和F2分别为参与比对两个装置的测量结果;U1和U2分别代表两个装置的扩展测量不确定度。
比对实验结果如表 3所示。所有比对因子En都小于1,从而验证了测量不确定度评定的合理性。
Table 3. Results of comparative tests
standard lens or results of long focal length measuring system testing results of designed system ${E_{\rm{n}}} = \left| {\frac{{{F_1}-{F_2}}}{{\sqrt {{U_1}^2 + {U_2}^2} }}} \right|$ F1/m U1 F2/m U2 38.86 1.01 38.24 0.97 0.44 58.17 1.50 57.74 2.30 0.16 125.4 3.3 118.3 9.9 0.68 -
利用研制的测量装置对500J灯抽运钕玻璃固体激光器激光材料热效应进行了测试,抽运开始时刻记录为0时刻,连续记录抽运后一段时间内激光材料热焦距的变化情况。测试结果如图 8所示。横坐标t为时间,纵坐标f3为所测得激光材料的热焦距,由测量结果可知,被测激光器在触发50s后,热效应最严重,等效焦距最短,约为110m,8min后激光材料散热完成, 热焦距消失。
基于H-S波前传感器的高能激光材料热效应参量测试
Parameter measurement of thermal effect of high-energy laser material based H-S wavefront sensor
-
摘要: 为了实现高能激光材料热效应参量的在线测试,设计了一套∅50mm口径的测量装置。装置采用准直He-Ne激光为光源,准直光经激光材料后的光程差用Hartmann-Shack波前传感器检测。根据波像差分解理论及波前变换关系,获得了高能激光材料热效应参量。分析评估了装置的扩展测量不确定度,对影响测量不确定度的系统参量进行了校准,最后设计并完成了测量不确定度对比验证实验。结果表明,系统波前畸变测量不确定度为0.06λ,30m~120m范围热焦距的扩展测量不确定度为8.4%。该系统能有效地用于高能激光材料热效应参量的在线测试。Abstract: In order to measure thermal effect parameters of high-energy laser material on-line, a testing device with aperture of 50mm was specially designed. Collimating He-Ne laser was used as light source. The optical-path difference of testing beam after passing the material was measured by Hartmann-Shack wavefront sensor. According to wavefront aberration decomposition theory and wavefront transformation relationship, thermal effect parameters of high-energy laser material were gotten. Measurement uncertainty of the device was analyzed and evaluated. The system parameters which affected measurement uncertainty were calibrated. Finally, a comparative experiment of measurement uncertainty was designed and completed. The result shows that, the measurement uncertainty of system wavefront aberration is 0.06λ. The measurement uncertainty is 8.4% with thermal focal length of 30m~120m. The system can be applied to measure thermal effect parameters of high-energy laser material online.
-
Table 1. Structure data of Keplerian resizing telescope
surface No. radius/mm thickness/mm aperture radius/mm glass 1 275.4 7.2 30 H-K9L 2 -179.47 6.0 30 ZF1 3 -570.2 472.91 30 AIR 4 28.18 1.5 6 ZF1 5 12.942 3.1 6 H-K9L 6 -41.30 0 6 AIR Table 2. Structure data of Keplerian resizing telescope
test number RMS/λ PV/λ 1 0.053 0.289 2 0.054 0.275 3 0.055 0.319 4 0.057 0.311 5 0.056 0.307 6 0.058 0.337 7 0.061 0.382 8 0.054 0.325 9 0.056 0.359 10 0.057 0.266 Table 3. Results of comparative tests
standard lens or results of long focal length measuring system testing results of designed system ${E_{\rm{n}}} = \left| {\frac{{{F_1}-{F_2}}}{{\sqrt {{U_1}^2 + {U_2}^2} }}} \right|$ F1/m U1 F2/m U2 38.86 1.01 38.24 0.97 0.44 58.17 1.50 57.74 2.30 0.16 125.4 3.3 118.3 9.9 0.68 -
[1] FAN T Y. Heat generation in Nd:YAG and Yb:YAG[J]. IEEE Journal of Quantum Electronics, 1993, 29(6):1457-1459. doi: 10.1109/3.234394 [2] KIMURA T, OTSUKA K. Thermal effects of a continuously pumped Nd3+:YAG laser[J]. IEEE Journal of Quantum Electronics, 1971, 7(8):403-407. doi: 10.1109/JQE.1971.1076822 [3] UPPAL J, MONGA J, BHAWALDAR D. Study of thermal effects in Nd doped phosphate glass laser rod[J]. IEEE Journal of Quantum Electronics, 1986, 22(12):2259-2265. doi: 10.1109/JQE.1986.1072930 [4] KOECHNER W. Thermal lensing in a Nd:YAG laser rod[J].Applied Optics, 1970, 9(11):2548-2553. doi: 10.1364/AO.9.002548 [5] PFISTNER C, WEBER R, WEBER H P, et al. Thermal beam distortions in end-pumped Nd:YAG, Nd:GSGG and Nd:YLF rods[J].IEEE Journal of Quantum Electronics, 1994, 30(7):1605-1615. doi: 10.1109/3.299492 [6] GAO M Y, ZHENG Y. Numerical calculation of thermal effect on laser-diode end-pumped Nd:YVO4 laser[J]. Laser Journal, 2003, 24(2):11-13(in Chinese). [7] LI L, SHI P, BAI J T. Semi-analytical thermal analysis of single end-pumped laser crystal temperature distribution[J]. Journal of Xi'an Jiaotong University, 2004, 38(4):369-372(in Chinese). [8] YU J, TAN H M, QIAN L Sh, et al. Theoretical study on thermal beam focusing in longitudinally-pumped solid-state laser rods[J]. High Power Laser and Particle Beams, 2000, 12(1):27-30(in Chinese). [9] ZHENG Y, GAO M Y, YAO J Q. Study on thermal effect of anisotropic laser medium by LD end-pumped[J]. Journal of Optoelectronics Laser, 2003, 14(10):1094-1098(in Chinese). [10] LI F, LIU R, BAI J T, et al. Investigation on temperature and thermal lens effects of laser diode pumped composite YAG rods[J]. Laser Technology, 2008, 32(1):101-104(in Chinese). [11] HOU J Y, WANG Y F, ZHU X P, et al. Numerical simulation of pumping uniformity and thermal effects of LD end-pumped slab amplifier[J]. Laser Technology, 2010, 34(6):802-805(in Chinese). [12] BURNHAM D C. Simple measurement of thermal lensing effects in laser rods[J]. Applied Optics, 1970, 9(7):1727-1728. doi: 10.1364/AO.9.001727 [13] OU Q F, FENG G Y, LIU D P, et al. Simulation and experimental study on thermal effects of Nd:YAG lasers[J]. Laser Technology, 2002, 26(1):15-16(in Chinese). [14] ZOU J, ZHAO Sh Zh, YANG K J, et al. Determining the thermal lens focus of LD end-pumped Nd:GdVO4 solid-state laser with CCD detecting method[J]. Laser Technology, 2006, 30(4):422-424(in Chinese). [15] FENG Zh, WAN Y F. Thermal effect of LD end-pumped Nd:GGG laser[J]. Laser Technology, 2014, 38(3):360-363(in Chinese). [16] LI X, XU X J, XI F J, et al. Measuring thermal focal length with a curvature sensor[J]. High Power Laser and Particle Beams, 2007, 19(9):1465-1468(in Chinese). [17] LIU M B, LU X M, REN Zh J, et al. Wavefront measurement of crystal dynamic thermal lens effect and thermal abberations in a PW Ti:sapphire laser[J]. Infrared and Laser Engineering, 2011, 40(5):835-839(in Chinese). [18] ZHAO Q, MENG Q A, JIANG Z W, et al. Study on parameter measurement precision of high energy laser beam with large aperture[J]. Laser Technology, 2015, 39(1):100-103(in Chinese).