-
石墨烯可看作理想的2维材料或真实的3维超薄材料。作为2维材料,石墨烯的电特性使用表面电导率σg来表征, 电导率σg包括带内贡献和带外贡献。在太赫兹波段,带内贡献占主导,而带外贡献可以忽略不计,在条件$ {\mu _{\rm{c}}} \gg {k_{\rm{B}}}{T_{\rm{a}}}$ (kB为玻尔兹曼常数,Ta为绝对温度)下,σg可表示为[10]:
$ {\sigma _{\rm{g}}} = \frac{{{e_0}^2{\mu _{\rm{c}}}}}{{{\rm{ \mathsf{ π} }}{\hbar ^2}}}\frac{{\rm{i}}}{{\omega + {\rm{i}}{\tau ^{ - 1}}}} $
(1) 式中,e0为元电荷,$ \hbar $为约化普朗克常量,ω为工作角频率,μc为石墨烯化学势,与外加电压和化学掺杂有关,τ为弛豫时间,与石墨烯质量有关。作为3维材料,石墨烯使用介电常数εg来表征其电特性。表面电导率σg与介电常数εg有如下关系:$ {\varepsilon _{\rm{g}}} = 1 + {\rm{i}}{\sigma _{\rm{g}}}/(\omega {\varepsilon _0}{d_{\rm{g}}})$,其中,ε0为空气的绝对介电常数,dg=0.34nm为单层石墨烯的厚度。
-
为了提高系统的调谐性能,引入石墨烯介质堆栈作为缓冲层,以形成光栅/堆栈缓冲层/波导(grating/stack buffer layer/wavegide, GSBW)结构,如图 6所示。图 6中,dd为一个周期单元中SiO2的厚度,n为石墨烯/SiO2周期数。在缓冲层中同样采用SiO2介质,那么整个缓冲层的等效介电常数εstack可由下式计算[14]:
$ {\varepsilon _{{\rm{stack}}}} = {\varepsilon _{\rm{d}}} + {\rm{i}}\frac{{{\sigma _{\rm{g}}}}}{{\omega {\varepsilon _0}{d_{\rm{d}}}}} $
(2) 式中,εd为SiO2的介电常数,ε0为真空介电常数。介质厚度dd越大,改变σg对εstack的影响越小。在图 1中,可将石墨烯与SiO2波导等效为一混合介质,由于波导厚度h较大,所以调节σg对系统传输率和吸收率的改变相对较小。在这里,将缓冲层周期单元中SiO2厚度设置为纳米量级,可有效提高系统调谐能力。
-
为了增强传输抑制吸收,重新设定τ=1ps。考虑dd=50nm和n=5,改进结构的传输谱显示在图 7中。μc=0.10eV对应on状态,μc=0.12eV对应off状态。对比图 2,系统的调谐能力增强。由于共振处传输曲线十分陡峭,所以这里调谐性能的提高不是特别明显。然而,多层石墨烯增大了系统的吸收损耗,导致最大传输率下降。若令Ton和Toff分别表示系统处于on状态和off状态下的传输率,则可知开关的调制深度ΔT=[Ton-Toff]/Ton由原来的99%降低为94%。
为了增强石墨烯的吸波率,再次设定τ=0.5ps。图 8中给出了系统吸收率随石墨烯化学势增大的变化情况。对比图 5,系统的调谐能力明显提高,频率调制深度$ \Delta f = f({\mu _{\rm{c}}} = 0.70{\rm{eV}}) - f({\mu _{\rm{c}}} = 0.10{\rm{eV}})$由原来的0.14THz变化为0.36THz。此外,由于多层石墨烯的出现,系统吸波性能显著增强。
图 9中显示了μc=0.20eV时,系统吸收率随dd的变化情况。随着dd的增加,系统吸收率无明显变化。这说明,该结构对于SiO2薄层厚度的变动具有良好的鲁棒性。
图 10中给出了μc=0.20eV和dd=50nm时,吸收率随周期数n的变化情况。随着n的增加,吸收谱右移,这说明调节缓冲层的厚度可实现Fano共振点的移动。此外,石墨烯层数随着n的增加而增加,因此系统吸收率提高。
图 11中显示了μc=0.20eV,dd=50nm,n=5时,吸收率随入射角度的变化情况。当θ=0°时,±m级衍射波是简并的。当电磁波斜入射时,简并性被破坏,±m级衍射波共振点分离。根据相位匹配条件[15] $\beta \to {\beta _j} = k(\sqrt {{\varepsilon _{\rm{c}}}} {\rm{sin}}{\theta _{{\rm{inc}}}} - j\lambda /p) $,其中β为传播常数,j为衍射级次,波数k=2π/λ,λ为自由空间波长,εc为覆盖媒质的介电常数,θinc为入射角度,则在β不变的条件下,对于+m级衍射波,其共振点向低频方向移动; 相反,对于-m级衍射波,共振点向高频方向移动[16]。因此,吸收谱表现出下图所示的分离现象,且角度越大,分离程度越高。同时,随着入射角度的增大,+m级衍射波对应的吸收率增大,而-m级衍射波对应的吸收率不断减小。
既然改变石墨烯化学势和电磁波入射角度均能够实现吸收谱的有效调节,那么综合改变μc和θ可实现确定频率下吸收率和吸收谱半峰全宽(full width at half maximum, FWHM)的调节。如图 12所示,在5.39THz处,实现了吸收率的上下调节。系统吸收率增加的同时,FWHM也增加,这说明系统对外的电磁泄漏速率不断增加。但是,作为二端口单极点网络,系统的临界耦合条件不可能满足,因而依然没有获得完美吸波。不过,基于这样的综合调控,该结构可以作为太赫兹衰减器和调制器。
石墨烯介质堆栈提高系统调控Fano共振能力
Improvement of system tunability for Fano resonance by graphene-dielectric stack
-
摘要: 为了更加有效地利用亚波长光栅/介质波导结构调控Fano共振,使用石墨烯介质堆栈代替石墨烯单层作为缓冲层,采用严格耦合波分析方法仿真改进后的结构,研究了堆栈单元中纳米级介质厚度增强石墨烯电导率的变化对整个堆栈结构等效介电常数的影响。结果表明,若系统作为高效光开关使用,则所需的石墨烯化学势改变由原来的0.06eV减小到了0.02eV,且开关调制深度高达94%;若系统作为可调谐吸波体使用,则其频率调制深度由原来的0.14THz增加到了0.36THz,大大扩展了吸收谱的调节范围。改进的结构提高了系统调控Fano的能力。Abstract: To enhance the tunability of subwavelength grating/waveguide structure for Fano resonance, the embedded graphene monolayer was replaced by graphene-dielectric stack as a buffer layer. The improved structure was simulated by using the method of rigorous coupled-wave analysis. Nanoscale dielectric thickness in each stack cell can strengthen the effects of the alteration of graphene's conductivity on the equivalent permittivity of stack structure. The results show that, if the system is exploited as an efficient photoswitch, the demanded change of chemical potential of grapheme decreases from original 0.06eV down to 0.02eV and the modulation depth of the switch is up to 94%. If the system is employed as a tunable absorber, the frequency modulation depth of absorption spectrum is raised from 0.14THz to 0.36THz and the tuning range is extended greatly. The improved structure strengthens the tunability of system for Fano resonance.
-
Key words:
- gratings /
- graphene-dielectric stack /
- rigorous coupled-wave analysis /
- Fano resonance
-
-
[1] HE M D, WANG K J, WANG L, et al.Graphene-based terahertz tunable plasmonics directional coupler[J]. Applied Physics Letters, 2014, 105(8):081903. [2] DONGY F, LIUP G, YU D W, et al. Dual-band reconfigurable terahertz patch antenna with graphene-stack-based backing cavity[J]. IEEE Antennas & Wireless Propagation Letters, 2016, 15:1541-1544. [3] ANDRYIEUSKI A, LAVRINENKO A V.Graphenemetamaterials based tunable terahertz absorber:effective surface conductivity approach[J]. Optics Express, 2013, 21(7):9144-9155. [4] GUO C C, ZHU Z H, YUAN X D, et al. Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures[J]. Advanced Optical Materials, 2016, 4(2):1955-1960. [5] ZHOU W D, ZHAO D Y, SHUAI Y C, et al.Progress in 2-D photonic crystal Fano resonance photonics[J]. Progress in Quantum Electronics, 2014, 38(1):1-74. doi: 10.1016/j.pquantelec.2014.01.001 [6] ZHENG H Y, HU F R. Design of narrowband guided-mode resonance filters in visible wavelength region[J]. Laser Technology, 2016, 40(1):118-121(in Chinese). [7] WANG Q, ZHANG D W, CHEN J B, et al. Recent progress of guided-mode resonance filters[J]. Laser Technology, 2010, 34(1):71-74(in Chinese). [8] GRANDE M, VINCENTI M A, STOMEO T, et al. Graphene-based perfect optical absorbers harnessing guided mode resonances[J]. Optics Express, 2015, 23(16):21032-21042. [9] MIZUTANI A, KIKUTA H, LWATA K. Numerical study on an asymmetric guided-mode resonant grating with a Kerr medium for optical switching[J]. Journal of the Optical Society of America, 2005, A22(2):355-360. [10] FARHAT M, ROCKSTUHL C, BAGCI H. A 3-D tunable and multi-frequency grapheme plasmonic cloak[J]. Optics Express, 2013, 21(10):12592-12603. [11] MOHARAM M G, GRANN E B, POMMET D A.Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings[J]. Journal of the Optical Society of America, 1995, A12(5):1068-1076. [12] JONES M H, JONES S H. The general properties of Si, Ge, SiGe, SiO2 and Si3N4[EB/OL].[2017-03-24]. http://www.virginiasemi.com/pdf/generalpropertiessi62002.pdf. [13] PIPER J R, LIU V, FAN S H. Total absorption by degenerate critical coupling[J]. Applied Physics Letters, 2014, 104(25):251110. [14] EI-NAGGAR S A. Tunable terahertz omnidirectional photonic gap in one dimensional graphene-based photonic crystal[J]. Optical and Quantum Electronics, 2015, 47(7):1627-1636. [15] WANG S S, MAGNUSSON R.Theory and applications of guided-mode resonance filters[J]. Applied Optics, 1993, 32(14):2608-2613. [16] SANG T, WANG Zh S, WU Y G, et al. Research on guided-mode resonance for sub-wavelength dielectric grating[J]. Acta Photonica Sinica, 2006, 35(5):641-645(in Chinese).