-
$ \begin{array}{l} {\rm{i}}\frac{{\partial \psi (z, R, t)}}{{\partial t}} = \left[ {} \right. - \frac{1}{{{m_{\rm{p}}}}}\frac{{{\partial ^2}}}{{\partial {R^2}}} - \frac{{2{m_{\rm{p}}} + 1}}{{4{m_{\rm{p}}}}}\frac{{{\partial ^2}}}{{\partial {z^2}}} + \\ V\left( {z, R} \right) + \left( {1 + \frac{1}{{2{m_{\rm{p}}} + 1}}} \right)zE\left( t \right)\left. {} \right]\psi (z, R, t) \end{array} $
(1) 式中,mp,R,z分别为核质量、核间距与电子坐标; t是时间; $ V\left( {z, R} \right) = 1/R - 1/\sqrt {{{\left( {z - R/2} \right)}^2} + 1} - 1/\sqrt {{{\left( {z + R/2} \right)}^2}} + 1$为H2+势能; $\psi \left( {z, R, t} \right) $为电子波函数。激光场形式为:
$ \begin{array}{l} E\left( t \right) = {E_1}{\rm{exp}}\left[ { - 4{\rm{ln}}\left( 2 \right){{\left( {t/{\tau _1}} \right)}^2}} \right]{\rm{cos}}({\omega _1}t) + \\ {E_{{\rm{XUV}}}}{\rm{exp}}\{ - 4{\rm{ln}}\left( 2 \right){\left[ {\left( {t - {t_{\rm{d}}}} \right)/{\tau _{{\rm{XUV}}}}} \right]^4}\} \times \\ {\rm{cos}}\left[ {{\omega _{{\rm{XUV}}}}\left( {t - {t_{\rm{d}}}} \right)} \right] \end{array} $
(2) 式中,E1,ω1,τ1为红外(infrared, IR)场振幅、频率和半峰全宽; EXUV,ωXUV,τXUV为XUV光源的振幅、频率和半峰全宽; td为两束激光场的延迟时间。
高次谐波频谱图可表示为:
$ S\left( \omega \right) = |\frac{1}{{\sqrt {2{\rm{ \mathsf{ π} }}} }}\smallint a\left( t \right){{\rm{e}}^{{\rm{ - i}}{\omega _1}t}}{\rm{d}}t|{^2} $
(3) 式中, $a\left( t \right) = - \left\langle {\psi \left( {z, R, t} \right)|\frac{{\partial V(z, R)}}{{\partial z}} + E\left( t \right)|\psi \left( {z, R, t} \right)} \right\rangle $为偶极加速度[21],ω为谐波频次。由于谐波辐射能E=hω,h为普朗克常量。因此在本文中,通过分析谐波阶次ω/ω1来讨论截止能量。
红外激光与远紫外激光场驱动H2+辐射谐波
H2+ radiation harmonics driven by infrared and extreme ultraviolet field
-
摘要: 为了了解H2+谐波辐射的过程,采用数值求解非玻恩-奥本海默近似薛定谔方程的方法,理论研究了H2+在10fs/800nm红外激光与6fs/30nm远紫外激光驱动下谐波辐射的特点。结果表明,谐波辐射的贡献主要来源于拉比振荡、多光子共振电离、电荷共振增强电离以及离解态电离;随着远紫外光的加入,谐波光谱呈现能量间隔为远紫外光子能量的多重谐波截止结构;当远紫外光与红外激光的延迟时间大于零或小于零时,谐波光谱呈现红移和蓝移的现象。该研究对理解分子谐波辐射过程是有帮助的。Abstract: In order to understand H2+ harmonic emission process, by using numerical solution of non-Bohn-Oppenheimer time-dependent Schrödinger equation, high-order harmonic generation (HHG) from H2+ driven by 10fs/800nm infrared (IR) field and 6fs/30nm extreme ultraviolet (XUV) pulse was theoretically investigated. The results show that, the contributions of HHG are mainly from Rabi-type oscillation, multi-photon resonance ionization, charge-resonance-enhanced ionization and dissociative ionization. With the introduction of XUV pulse, multi-harmonic cutoff extension separated by XUV photon energy can be found on HHG spectra. When the delay time between IR field and XUV pulse is larger than zero or smaller than zero, the red-shift and blue-shift of harmonics spectra can be obtained. The investigation is helpful to understand the molecular high-order harmonic generation.
-
-
[1] WANG Ch, LIU H L, TIAN J Sh, et al. Analysis of intrinsic atomic phase in process of extreme ultraviolet attosecond pulse generation[J]. Laser Technology, 2012, 36(3):342-345(in Chinese). [2] LIU H, FENG L Q. Mid-infrared field phase measurement and attosecond pulse generation[J]. Laser Technology, 2017, 41(2):151-158(in Chinese). [3] GOULIELMAKIS E, SCHULTZE M, HOFSTETTER M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883):1614-1617. doi: 10.1126/science.1157846 [4] CORKUM P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13):1994-1997. doi: 10.1103/PhysRevLett.71.1994 [5] STAUDTE A, COCKE C L, PRIOR M H, et al. Observation of a nearly isotropic high-energy Coulomb explosion group in the fragmentation of D2 by short laser pulses[J]. Physical Review, 2002, A65(2):020703. [6] ZUO T, CHELKOWSKI S, BANDRAUK A D. Harmonic generation by the H2+ molecular ion in intense laser fields[J]. Physical Review, 1993, A48(5):3837-3844. [7] CHELKOWSKI S, FOISY C, BANDRAUK A D. Electron-nuclear dynamics of multiphoton H2+ dissociative ionization in intense laser fields[J]. Physical Review, 1998, A57(2):1176-1185. [8] BIAN X B, BANDRAUK A D. Multichannel molecular high-order harmonic generation from asymmetric diatomic molecules[J]. Physical Review Letters, 2010, 105(9):093903. doi: 10.1103/PhysRevLett.105.093903 [9] BIAN X B, BANDRAUK A D. Probing nuclear motion by frequency modulation of molecular high-order harmonic generation[J]. Physical Review Letters, 2014, 113(19):193901. doi: 10.1103/PhysRevLett.113.193901 [10] LI M Z, JIA G R, BIAN X B. Alignment dependent ultrafast electron-nuclear dynamics in molecular high-order harmonic generation[J]. The Journal of Chemical Physics, 2017, 146(8):084305. doi: 10.1063/1.4976973 [11] ZHANG J, GE X L, WANG T, et al. Spatial distribution on high-order-harmonic generation of an molecule in intense laser fields[J]. Physical Review, 2015, A92(1):013418. [12] FENG L Q, LIU H. Ultrashort ultraviolet source assisted enhancement of the attosecond pulse intensity[J]. Journal of Atomic and Molecular Physics, 2015, 32(4):616-620(in Chinese). [13] ZHANG G T, LIU X S. Generation of an extreme ultraviolet supercontinuum and isolated sub-50as pulse in a two-colour laser field[J]. Journal of Physics, 2009, B42(12):125603. [14] TAKAHASHI E J, KANAI T, ISHIKAWA K L, et al. Dramatic enhancement of high-order harmonic generation[J]. Physical Review Letters, 2007, 99(5):053904. doi: 10.1103/PhysRevLett.99.053904 [15] LU R F, ZHANG P Y, HAN K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields[J]. Physical Review, 2008, E77(6):066701. [16] HU J, HAN K L, HE G Z. Correlation quantum dynamics between an electron and D2+ molecule with attosecond resolution[J]. Physical Review Letters, 2005, 95(12):123001. doi: 10.1103/PhysRevLett.95.123001 [17] FENG L Q, CHU T S. Generation of an isolated sub-40as pulse using two-color laser pulses:Combined chirp effects[J]. Physical Review, 2011, A84(5):053853. [18] FENG L Q. Molecular harmonic extension and enhancement from H2+ ions in the presence of spatially inhomogeneous fields[J]. Physical Review, 2015, A92(5):053832. [19] LIU Sh Sh, MIAO X Y. Enhancement of high-order harmonic emission by using a coherent superposition in a two-color laser field[J]. Journal of Atomic and Molecular Physics, 2012, 29(5):881-885(in Chinese). [20] DU H N, MIAO X Y. Theoretical exploration of intensity effects on high-order harmonic generation from H2+ molecules[J]. Journal of Atomic and Molecular Physics, 2013, 30(1):115-120(in Chinese). [21] BURNETT K, REED V C, COOPER J, et al. Calculation of the background emitted during high-harmonic generation[J]. Physical Review, 1992, A45(5):3347-3349. [22] ANTOINE P, PIRAUX B, MAQUET A. Time profile of harmonics generated by a single atom in a strong electromagnetic field[J]. Physical Review, 1995, A51(3):R1750-R1753. [23] SILVA R E F, CATOIRE F, RIVIERE P, et al. Correlated electron and nuclear dynamics in strong field photoionization of H2+[J]. Physical Review Letters, 2013, 110(11):113001. doi: 10.1103/PhysRevLett.110.113001