高级检索

汽车发动机连杆激光3-D打印工艺研究

雷凯云, 秦训鹏, 徐昀, 刘华明, 胡泽启

雷凯云, 秦训鹏, 徐昀, 刘华明, 胡泽启. 汽车发动机连杆激光3-D打印工艺研究[J]. 激光技术, 2018, 42(1): 136-140. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.027
引用本文: 雷凯云, 秦训鹏, 徐昀, 刘华明, 胡泽启. 汽车发动机连杆激光3-D打印工艺研究[J]. 激光技术, 2018, 42(1): 136-140. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.027
LEI Kaiyun, QIN Xunpeng, XU Yun, LIU Huaming, HU Zeqi. Study on laser 3-D printing process of automotive engine connecting rods[J]. LASER TECHNOLOGY, 2018, 42(1): 136-140. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.027
Citation: LEI Kaiyun, QIN Xunpeng, XU Yun, LIU Huaming, HU Zeqi. Study on laser 3-D printing process of automotive engine connecting rods[J]. LASER TECHNOLOGY, 2018, 42(1): 136-140. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.027

汽车发动机连杆激光3-D打印工艺研究

基金项目: 

国家自然科学基金资助项目 51575415

详细信息
    作者简介:

    雷凯云(1994-), 男, 硕士研究生, 现主要从事激光加工方面的研究

    通讯作者:

    秦训鹏, E-mail:qxpwhut@qq.com

  • 中图分类号: TG665

Study on laser 3-D printing process of automotive engine connecting rods

  • 摘要: 为了研究汽车发动机连杆激光3-D打印制造工艺,采用理论分析和实验验证的方法,建立了连杆3-D数据模型,进行了分层切片处理,通过S型扫描和轮廓偏移扫描,规划两种连杆加工路径。选用铁基合金粉末以及相应的工艺参量,在激光3-D打印系统中进行连杆打印试验。扫描单层轨迹用时4min30s~4min56s,总用时4h20min。结果表明,连杆成形区底部的金相组织主要是柱状晶和树枝晶,中上部是细小的等轴晶,层间致密搭接,形成良好的冶金结合;成形连杆显微硬度为450HV~490HV,屈服强度为754MPa,抗拉强度为1189MPa,延伸率为9%。连杆激光3-D打印成形制坯性能相比于锻造、粉锻制造工艺,减少了工装成本支出并缩短了生产准备工时,其屈服强度、抗拉强度等力学性能超过钢锻连杆,与国外粉锻连杆相比,差别不大,能满足连杆制坯要求。
    Abstract: In order to study the manufacturing process of laser 3-D printing for automobile engine connecting rods, by means of theoretical analysis and experimental verification, 3-D model of a connecting rod was established and slicing was done. By S-type scanning and contour offset scanning, two machining paths of connecting rods were planned. Alloy powders based on iron and the corresponding technological parameters were selected to carry out the rod print test in a laser 3-D printing system. It took 4min30s~4min56s to scanning a single layer and it took 4h20min totally. The results show that the metallographic structure at the bottom of the forming zone of the connecting rod is mainly columnar crystal and dendritic crystal. The middle and upper part are small equiaxed crystal. Interlayer is dense and good metallurgical bonding had been formed. The microhardness of the formed connecting rod is 450HV~490HV, yield strength is 754MPa, tensile strength is 1189MPa, and elongation rate was 9%. Compared to forging, powder forging manufacturing processes, laser 3-D printing forming reduces tooling costs and shortens the production preparation time. Its mechanical properties, such as yield strength and tensile strength, exceed those of steel forging links. Compared with foreign powder forged connecting rod, the difference is not very big. The process can meet the requirements of connecting rod blank making.
  • Figure  1.   3-D model and slices of connecting rod

    Figure  2.   Principles of S-type scanning and contour offset scanning

    Figure  3.   Main dimension of connecting rod

    Figure  4.   Filling routes of connecting rod with S-type scanning and contour offset scanning

    Figure  5.   Laser 3-D printing system

    Figure  6.   Process and result of 3-D printing connecting rod

    a—10min b—30min c—60min d—4h20min

    Figure  7.   Samples and microstructure of laser 3-D printing connecting rod

    Figure  8.   Hardness distribution of connecting rod samples

    a—along the layer height b—in the single layer

    Table  1   Chemical compositions of JG-3 iron-based alloy powder

    element C Si Cr B Fe
    mass fraction 0.12 0.80 16.5 0.90 balance
    下载: 导出CSV

    Table  2   Processing parameters of 3-D printing experiment

    forming part powder material laser power/W scanning speed/(mm·min-1) powder feed/(g·min-1) beam diameter/mm
    connecting rod Fe-based alloy 1000 1000 15 1
    下载: 导出CSV

    Table  3   Comparison of mechanical properties of connectingrods with different manufacturing processes

    manufacturing processes hardness/ HV yield strength/ MPa tensile strength/ MPa elongation/ %
    C70 forged 260 550 950~1050 >10
    C70S6 forged[19] 280~330 580~630 970~1010 12
    3Cu7C powder forged[20] 345 770 1120 9
    H16 powder forged[21] 295 703 1038 11
    JG-3 3-D printing 450~490 754 1189 9
    下载: 导出CSV
  • [1]

    JIANG H Y. Materials and production techniques applied in engine connecting rod[J]. Internal Combustion Engine & Parts, 2013, 34(10):23-26(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjpj201310006

    [2]

    HUANG W D, LI Y M, FENG L P, et al. laser solid forming of metal powder materials[J]. Journal of Materials Engineering, 2002, 30(3):40-43(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CLGC200203010.htm

    [3]

    LI H Y, SHI Sh H, FU G Y, et al. Control of process parameters of reducing solid of revolution with coaxial inside-beam powder feeding accumulation[J]. Chinese Journal of Lasers, 2011, 38(8):0803012(in Chinese). DOI: 10.3788/CJL

    [4]

    CAI W, FU G Y, SHI Sh H, et al. Research on thickness control of variable diameter solid with coaxial inside-beam powder feeding laser cladding by defocusing technique[J]. Chinese Journal of Lasers, 2012, 39(7):0703003(in Chinese). DOI: 10.3788/CJL

    [5]

    WANG K, YANG H O, LIU F Ch, et al. Stress and deformation finite element method simulation of thin wall part with pre-deformation subtract during laser solid forming[J]. Chinese Journal of Lasers, 2012, 39(6):0603002(in Chinese). DOI: 10.3788/CJL

    [6]

    FANG Q Q, FU G Y, WANG C, et al. Laser direct forming technology of double thin-wallet parts with connecting ribs[J]. Chinese Journal of Lasers, 2017, 44(2):0202005(in Chinese). DOI: 10.3788/CJL

    [7]

    SONG X H, ZHOU Y F, XING J K, et al. Comparison between laser cladding Fe-based and Ni-based alloy coatings on 35CrMo[J]. Laser Technology, 2015, 39(1):39-45(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201501008.htm

    [8]

    SHI B F, ZHANG A F, QI B L, et al. Influence of heat accumulation on microstructure and property of Ti-6Al-4V in laser direct forming[J]. Laser Technology, 2016, 40(1):29-32(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201601008

    [9]

    ZHOU S, DAI X, ZHENG H. Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding[J]. Optics & Laser Technology, 2012, 44(1):190-197. http://www.sciencedirect.com/science/article/pii/S0030399211001770

    [10]

    CUI Z Q, YANG H W, WANG W X, et al. Laser cladding Al-Si/Al2O3-TiO2 composite coatings on AZ31B magnesium alloy[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2012, 27(6):1042-1047. DOI: 10.1007/s11595-012-0597-x

    [11]

    CHEN J F, WANG J T, ZHOU J Y. Research process of laser cladding on magnesium alloy surface[J]. Laser Technology, 2015, 39(5):631-636(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201505010

    [12]

    WANG H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2690-2698(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201410002

    [13]

    LU Z L, LI D C, LU B H, et al. Investigation into the direct laser forming process of steam turbine blade[J]. Optics and Laser in Engineering, 2011, 49(9/10):1101-1110. http://www.sciencedirect.com/science/article/pii/S0143816611001631

    [14]

    LIU S Q, GUO Y Sh, YANG Y L, et al. Investigation on orthogonal experiments of laser cladding anti-wear resistance coating on H13 steel[J]. Laser Technology, 2015, 39(3):399-404(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201503026

    [15]

    GAO J, SONG D Y, FENG J W. Influence of processing parameters on geometrical features of CBN coatings by laser cladding on titanium alloy surface[J]. Surface Technology, 2015, 44(1):77-80(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-BMJS201501016.htm

    [16]

    CHEN L, TAO R, LOU D Y, et al. Analysis of the mechanism cracking during the multipass laps cladding experiment.Laser & Optoelectronics Progress, 2014, 51(10):101401(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGDJ201410015.htm

    [17]

    XIE J X. New technique and new technology of material processing[M]. Beijing:Metallurgical Industry Press, 2004:16-20(in Chinese).

    [18]

    ZHU X M. Study of development and application of high-apeed cutting tool materials[J]. Machinery Design & Manufacture, 2012, 50(11):244-245(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSYZ201211086.htm

    [19]

    WANG Zh H, LI Sh, GE Y, et al. Research on micstructure and mechanical properties and fracture splitting properties of forged connecting rod of C70S6 non-quenched and tempered steel[J]. Hot Working Technology, 2015, 44(19):39-43(in Chinese).

    [20]

    ILIA E, LANNI G, XIN J, et al. Investigation on high strength powder metal forged connecting rods[J]. Transactions of CSICE, 2008, 26(5):463-469(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nrjxb200805013

    [21]

    BAI L N, LIU F P, WANG S, et al. Micstructure and mechanical properties of Fe-C-Cu powder-forged connecting rod[J]. Acta Metallurgica Sinica, 2016, 52(1):41-50(in Chinese).

图(8)  /  表(3)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-15
  • 修回日期:  2017-03-30
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回