高级检索

拉盖尔-高斯光束作用下熔石英温度及应力研究

赵麒, 白忠臣, 周骅, 陆安江, 张正平, 刘桥

赵麒, 白忠臣, 周骅, 陆安江, 张正平, 刘桥. 拉盖尔-高斯光束作用下熔石英温度及应力研究[J]. 激光技术, 2018, 42(1): 121-126. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.024
引用本文: 赵麒, 白忠臣, 周骅, 陆安江, 张正平, 刘桥. 拉盖尔-高斯光束作用下熔石英温度及应力研究[J]. 激光技术, 2018, 42(1): 121-126. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.024
ZHAO Qi, BAI Zhongchen, ZHOU Hua, LU Anjiang, ZHANG Zhengping, LIU Qiao. Research of temperature and thermal stress of fused silica irradiated by Laguerre-Gaussian beam[J]. LASER TECHNOLOGY, 2018, 42(1): 121-126. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.024
Citation: ZHAO Qi, BAI Zhongchen, ZHOU Hua, LU Anjiang, ZHANG Zhengping, LIU Qiao. Research of temperature and thermal stress of fused silica irradiated by Laguerre-Gaussian beam[J]. LASER TECHNOLOGY, 2018, 42(1): 121-126. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.024

拉盖尔-高斯光束作用下熔石英温度及应力研究

基金项目: 

国际合作研究资助项目 2014DFA00670

详细信息
    作者简介:

    赵麒(1976-), 男, 博士研究生, 主要从事激光微加工技术方面的研究

    通讯作者:

    刘桥, E-mail:liuqiao1955@163.com

  • 中图分类号: TN249

Research of temperature and thermal stress of fused silica irradiated by Laguerre-Gaussian beam

  • 摘要: 为了研究拉盖尔-高斯光束与熔石英相互作用,采用仿真计算的方法对TEM00,TEM01和TEM10 3种模式拉盖尔-高斯光束辐照下的熔石英的温度和热应力进行研究,取得了仿真数据。结果表明,激光光强的空间分布影响材料的温度分布和应力分布;温度的积累效应明显,经过连续激光脉冲作用后材料温度持续升高,焦点区域超过1900℃;温度梯度导致热应力产生,局部热应力接近50MPa。该仿真结果为熔石英的加工提供了有益的参考。
    Abstract: In order to study the interaction of Laguerre-Gaussian beam and fused quartz, the method of simulation calculation was adopted to study the temperature and thermal stress of the fused quartz irradiated by 3 modes of Laguerre-Gaussian beam (TEM00, TEM01, TEM10). The simulation data were obtained. The results show that spatial distribution of laser intensity affects temperature distribution and stress distribution of the materials. The accumulation effect of temperature is obvious. After continuous laser pulse action, the material temperature continues to rise. The focus area is over 1900℃. The temperature gradient leads to thermal stress. The local thermal stress is close to 50MPa. The simulation results provide the useful reference for the processing of fused silica.
  • Figure  1.   a—laser irradiation system b—power of laser pulses

    Figure  2.   Spatial intensity distribution of Laguerre-Gaussian beam

    a—TEM00 b—TEM01 c—TEM10

    Figure  3.   Temperature distribution of fused silica by different laser beams

    a—TEM00, z=0μm b—TEM00, y=0μm c—TEM01, z=0μm d—TEM01, y=0μm e—TEM10, z=0μm f—TEM10, y=0μm

    Figure  4.   Spatial and temporal distribution of fused silica temperature

    a—spatial distribution at t=1.428μs b—temporal distribution at sampling points

    Figure  5.   Thermal stress distribution of fused silica by different laser beams

    a—TEM00, z=0μm b—TEM00, y=0μm c—TEM01, z=0μm d—TEM01, y=0μm e—TEM10, z=0μm f—TEM10, y=0μm

    Figure  6.   Thermal stress distribution

    Table  1   Physical parameters of fused silica

    temperature/℃ 20 250 500 750 1000 1500 1700 2000 2500
    thermal conductivity/(W·m-1·K-1) 1.30 1.56 1.84 2.13 2.40 2.26 2.28 2.38
    specific heat capacity/(J·kg-1·K-1) 740 987 1121 1178 1121 1246 1273 1273
    density/(kg·m-3) 2200 2200 2200 2200 2200 2200 2200 2200 2200
    expansion coefficient/10-7K-1 2.76 7.95 5.75 4.68 4.17 5.10 6.00 11.45 11.45
    Young modulus/GPa 71.44 70.76 70.30 70.43 71.05 73.79 75.45 85.28
    Poisson ratio 0.158 0.153 0.150 0.148 0.150 0.160 0.166 0.210
    下载: 导出CSV
  • [1]

    WEI Ch Y, HE H B, DENG Zh, et al. Study of thermal behaviours in CO2 laser irradiated glass[J]. Optical Engineering, 2005, 44(4):044202. DOI: 10.1117/1.1882374

    [2]

    LI Y. Heat accumulation in high repetition rate femtosecond laser micromachining and its applications[D]. Tianjin: Tianjin University, 2012: 11-31(in Chinese).

    [3]

    LI Sh X, ZHANG Zh P, QIN Sh J, et al. Research on the temperature and thermal stress of fused silica irradiated by a laser pulse[J].Laser & Infrared, 2016, 46(7):786-791(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201607002

    [4]

    YU J X, HE Sh B, XIANG X, et al. Simulation on stress control of laser irradiated fused silica on ANSYS[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(6):870-874(in Chinese).

    [5]

    LI X L, NIU Ch H, MA M Y, et al. Finite element simulation of damage characteristics of CCD detectors under single-laser-pulse irradiation[J]. Laser Technology, 2016, 40(5):730-733(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201605023

    [6]

    CAI J X, ZHANG Y, WANG D, et al. Numerical simulation study on thermal stress damage in 1064nm anti-reflection fused silica by laser[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2014, 37(6):77-81(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-CGJM201406020.htm

    [7]

    JIAO J K, WANG X B. Temperature distribution of moving quartz glass heated by CO2 laser[J]. High Power Laser and Particle Beams, 2007, 19(1):1-4(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200701001

    [8]

    JIANG N, NIU Y X, ZHANG Sh L, et al. Numerical simulation of thermal shock effect on germanium induced by out-of-band pulsed-laser[J]. Infrared and Laser Engineering, 2008, 37(3):481-484(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc200803025

    [9]

    SU L, ZENG X D. Study of thermal deformations of laser windows[J]. Electronic Science and Technology, 2009, 22(4):63-65(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkj200904018

    [10]

    COMSOL. Heat transfer module user's guide[EB/OL]. (2013-11-01)[2017-03-05]. http://www.comsol.com/support/knowledgebase.

    [11]

    COMSOL. Structural mechanics module user's guide[EB/OL]. (2013-11-01)[2017-3-05]. http://www.comsol.com/support/knowledgebase.

    [12]

    GRIGOROPOULOS C P. Transport in laser microfabrication[M].New York, USA:Cambridge University Press, 2009:60-84.

    [13]

    GAO Y H, AN Zh Y, LI L J, et al. Research on beam shaping for high-order gaussian beam[J]. Optics & Optoelectronic Technology, 2011, 9(5):61-64(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201105013

    [14]

    QIN S J, LI W J. Micromachining of complex channel systems in 3-D quartz substrates using Q-switched Nd:YAG laser[J]. Applied Physics, 2002, A74(6):773-777. DOI: 10.1007/s003390100943

    [15]

    LI Sh X, BAI Zh Ch, QIN Sh J. Researche on the fabrication of micro channels in fused silica substrates by nanosecond laser[J].Laser & Optoelectronics Progress, 2012, 49(2):041401(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGDJ201204017.htm

    [16]

    ZHAI L B, ZHAO H L, CHEN J M. The microfabrication of microchannel on glass with frequency tripled Nd:YAG laser[J]. Applied Laser, 2006, 26(6):365-368(in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-yyjg200606002.htm

    [17]

    LI Sh X, BAI Zh Ch, HUANG Zh, et al. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma[J]. Acta Physica Sinica, 2012, 61(11):115201(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201211047

图(6)  /  表(1)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-07
  • 修回日期:  2017-05-07
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回