-
激光脉冲照射熔石英时,考虑到激光脉冲作用时间短,忽略石英辐射与周围空气的传导与对流因素,建立傅里叶热传导方程为[10]:
$ \rho c\frac{{\partial T}}{{\partial t}} + \nabla \cdot \left( { - \kappa \nabla T} \right) = Q $
(1) 式中,▽·(-κ▽T)为热传导项,Q为热源,t为时间,ρ为密度,c为比热容,κ为导热系数,T为温度。
考虑激光加热迅速,忽略对流和辐射项在绝热条件下,边界条件为:
$ - \mathit{\boldsymbol{n}}\cdot( - \kappa \nabla T) = 0 $
(2) 式中,n为单位矢量。
-
热应力和应变求解涉及多个变量和方程。应变ε可以由形变的梯度▽u表示:
$ \mathit{\boldsymbol{\varepsilon }} = \frac{1}{2}(\nabla \mathit{\boldsymbol{u}} + \nabla {\mathit{\boldsymbol{u}}^{\rm{T}}}) $
(3) 由广义胡克定律可以得到应力s、应变ε和温度T之间的关系[11]:
$ \mathit{\boldsymbol{s}} = {\mathit{\boldsymbol{s}}_0} + \mathit{\boldsymbol{C}}{\rm{:}}\left( {\mathit{\boldsymbol{\varepsilon }} - {\mathit{\boldsymbol{\varepsilon }}_0} - {\mathit{\boldsymbol{\varepsilon }}_{{\rm{th}}}}} \right) $
(4) 式中,s0和ε0为初始应力与初始应变, 热应变量εth= α(T-Tref),α为材料的膨胀系数,“: ”为张量的双点积(双点乘),C为4阶弹性张量,可表示为6×6的矩阵形式。
-
由于熔石英是非晶体,其物理特性各向同性。随着熔石英温度变化,其物理参量会发生变化。表 1中为熔石英各个温度下的参量值[4]。
Table 1. Physical parameters of fused silica
temperature/℃ 20 250 500 750 1000 1500 1700 2000 2500 thermal conductivity/(W·m-1·K-1) 1.30 1.56 1.84 2.13 2.40 2.26 2.28 — 2.38 specific heat capacity/(J·kg-1·K-1) 740 987 1121 1178 1121 1246 1273 — 1273 density/(kg·m-3) 2200 2200 2200 2200 2200 2200 2200 2200 2200 expansion coefficient/10-7K-1 2.76 7.95 5.75 4.68 4.17 5.10 6.00 11.45 11.45 Young modulus/GPa 71.44 70.76 70.30 70.43 71.05 73.79 75.45 85.28 — Poisson ratio 0.158 0.153 0.150 0.148 0.150 0.160 0.166 0.210 — 采用分段线性函数对以上物理参量进行拟合,20℃以下的参量以20℃的参量代替,2500℃以上的参量以2500℃的参量代替,便于仿真计算。
假设不随温度变化的石英材料参量有:吸收系数β=10cm-1,密度ρ=2.2g/cm3,反射系数R=0.035。
-
考虑到纳秒激光为长脉宽激光,激光在通过一定厚度的熔石英介质后,由于介质吸收了一部分光能量后,透射光的强度就要减弱;熔石英对激光的吸收遵从朗伯比尔定律(Beer-Lambert law)。以熔石英所吸收的能量作为激光加热热源,表示为[12]:
$ \begin{array}{l} \;\;\;\;\;\;\;\;\;Q\left( {x, y, z, t} \right) = \\ \left( {1 - R} \right)\beta P\left( t \right)I\left( {x, y, z} \right){\rm{exp}}( - \beta z) \end{array} $
(5) 式中,β为材料吸收系数,R为材料反射系数,P(t)为激光功率时间分布,I(x, y, z)为激光强度空间分布。
高斯激光脉冲的功率形式为:
$ \begin{array}{l} P\left( t \right) = {P_{{\rm{max}}}}{\rm{exp}}\left[ {( - 4{\rm{ln}}2){{\left( {\frac{t}{{{t_{\rm{p}}}}}} \right)}^2}} \right] = \\ \;\;\left( {\frac{{{E_{\rm{p}}}}}{{1.064{t_{\rm{p}}}}}} \right)\;{\rm{exp}}\left[ {( - 4{\rm{ln}}2){{\left( {\frac{t}{{{t_{\rm{p}}}}}} \right)}^2}} \right] \end{array} $
(6) 式中, Pmax为脉冲峰值功率,Ep为单个脉冲能量,tp为脉冲宽度半峰全宽(full wave at half maximum, FWHM)。
柱面坐标系下广义拉盖尔-高斯光束光强分布[13]为:
$ \begin{array}{l} I\left( {r, \varphi , z} \right) = \frac{2}{{\pi {w^2}\left( z \right)}}{\left[ {\sqrt 2 \frac{r}{{w\left( z \right)}}} \right]^{2l}} \cdot {L_{\rm{p}}}^l{\left[ {\frac{{2{r^2}}}{{{w^2}\left( z \right)}}} \right]^2} \cdot \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{exp}}{\left[ {\frac{{2{r^2}}}{{{w^2}\left( z \right)}}} \right]^2} \cdot \left\{ \begin{array}{l} {\rm{co}}{{\rm{s}}^2}(l\varphi )\\ {\rm{si}}{{\rm{n}}^2}(l\varphi ) \end{array} \right. \end{array} $
(7) 式中,w(z)为光束半径,$ w\left( z \right) = {w_0}{\left( {1 + \frac{{{z^2}}}{{{z_{\rm{R}}}^2}}} \right)^{0.5}}, {z_{\rm{R}}} = \frac{{n{\rm{ \mathsf{ π} }}{w_0}^2}}{\lambda }$为瑞利长度,n为介质折射率,λ为激光波长,w0为焦斑半径,Lpl为拉盖尔多项式,其不同阶数的表达式为:
$ {L_n}^m\left( \xi \right) = \sum\limits_{k = 0}^m {\frac{{\left( {n + m} \right)!{{\left( { - \xi } \right)}^k}}}{{\left( {m + k} \right)!k!\left( {n - k} \right)!}}} $
(8) 式中,l和p分别代表角向模数和径向模数,表示既可以取cos2(lφ),也可以取sin2(lφ),φ代表柱面坐标系下的角度。
-
利用激光对熔石英材料进行微加工,这一方面已经有人进行理论和实验的研究[14-17]。针对这一应用本文中构建激光辐照系统模型并进行仿真计算。如图 1a所示,光束照射在圆柱体熔石英上表面, 聚焦于中心位置。参照声光调Q的Nd: YAG激光器的参量,激光波长λ=1064nm;脉冲能量Ep=1.7mJ;脉冲宽度(FWHM) tp=140ns,光束通过聚焦透镜后,焦斑半径w0≈20μm;熔石英样品几何外形为圆柱体,直径400μm、长度2000μm,样品横向尺寸远大于光斑半径,样品厚度超过激光聚焦深度(瑞利长度)。仿真过程为两个时间上连续的激光脉冲对熔石英的辐照过程,功率分布如图 1b所示。单位功率下, TEM00, TEM01, TEM10模拉盖尔-高斯激光在t=0时刻、z=0平面上的强度分布如图 2所示。
采用COMSOL软件中的固体传热模块和固体力学模块,通过温度耦合的方式进行多物理场的仿真,得到温度和热应力分布结果[6-7]。融石英外表面采用绝热处理;熔石英的初始温度和外界环境温度均为20℃;位移场和速度场初始值均为0;采用温变物理参量的熔石英进行仿真;网格剖分采用自由剖分四面体结构,利用COMSOL软件的瞬态自适应网格细化的功能,以兼顾仿真结果的精细度和计算数据量。
拉盖尔-高斯光束作用下熔石英温度及应力研究
Research of temperature and thermal stress of fused silica irradiated by Laguerre-Gaussian beam
-
摘要: 为了研究拉盖尔-高斯光束与熔石英相互作用,采用仿真计算的方法对TEM00,TEM01和TEM10 3种模式拉盖尔-高斯光束辐照下的熔石英的温度和热应力进行研究,取得了仿真数据。结果表明,激光光强的空间分布影响材料的温度分布和应力分布;温度的积累效应明显,经过连续激光脉冲作用后材料温度持续升高,焦点区域超过1900℃;温度梯度导致热应力产生,局部热应力接近50MPa。该仿真结果为熔石英的加工提供了有益的参考。Abstract: In order to study the interaction of Laguerre-Gaussian beam and fused quartz, the method of simulation calculation was adopted to study the temperature and thermal stress of the fused quartz irradiated by 3 modes of Laguerre-Gaussian beam (TEM00, TEM01, TEM10). The simulation data were obtained. The results show that spatial distribution of laser intensity affects temperature distribution and stress distribution of the materials. The accumulation effect of temperature is obvious. After continuous laser pulse action, the material temperature continues to rise. The focus area is over 1900℃. The temperature gradient leads to thermal stress. The local thermal stress is close to 50MPa. The simulation results provide the useful reference for the processing of fused silica.
-
Key words:
- laser technique /
- temperature /
- simulation /
- fused silica /
- Laguerre-Gaussian beam /
- thermal stress
-
Table 1. Physical parameters of fused silica
temperature/℃ 20 250 500 750 1000 1500 1700 2000 2500 thermal conductivity/(W·m-1·K-1) 1.30 1.56 1.84 2.13 2.40 2.26 2.28 — 2.38 specific heat capacity/(J·kg-1·K-1) 740 987 1121 1178 1121 1246 1273 — 1273 density/(kg·m-3) 2200 2200 2200 2200 2200 2200 2200 2200 2200 expansion coefficient/10-7K-1 2.76 7.95 5.75 4.68 4.17 5.10 6.00 11.45 11.45 Young modulus/GPa 71.44 70.76 70.30 70.43 71.05 73.79 75.45 85.28 — Poisson ratio 0.158 0.153 0.150 0.148 0.150 0.160 0.166 0.210 — -
[1] WEI Ch Y, HE H B, DENG Zh, et al. Study of thermal behaviours in CO2 laser irradiated glass[J]. Optical Engineering, 2005, 44(4):044202. doi: 10.1117/1.1882374 [2] LI Y. Heat accumulation in high repetition rate femtosecond laser micromachining and its applications[D]. Tianjin: Tianjin University, 2012: 11-31(in Chinese). [3] LI Sh X, ZHANG Zh P, QIN Sh J, et al. Research on the temperature and thermal stress of fused silica irradiated by a laser pulse[J].Laser & Infrared, 2016, 46(7):786-791(in Chinese). [4] YU J X, HE Sh B, XIANG X, et al. Simulation on stress control of laser irradiated fused silica on ANSYS[J]. Journal of University of Electronic Science and Technology of China, 2012, 41(6):870-874(in Chinese). [5] LI X L, NIU Ch H, MA M Y, et al. Finite element simulation of damage characteristics of CCD detectors under single-laser-pulse irradiation[J]. Laser Technology, 2016, 40(5):730-733(in Chinese). [6] CAI J X, ZHANG Y, WANG D, et al. Numerical simulation study on thermal stress damage in 1064nm anti-reflection fused silica by laser[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2014, 37(6):77-81(in Chinese). [7] JIAO J K, WANG X B. Temperature distribution of moving quartz glass heated by CO2 laser[J]. High Power Laser and Particle Beams, 2007, 19(1):1-4(in Chinese). [8] JIANG N, NIU Y X, ZHANG Sh L, et al. Numerical simulation of thermal shock effect on germanium induced by out-of-band pulsed-laser[J]. Infrared and Laser Engineering, 2008, 37(3):481-484(in Chinese). [9] SU L, ZENG X D. Study of thermal deformations of laser windows[J]. Electronic Science and Technology, 2009, 22(4):63-65(in Chinese). [10] COMSOL. Heat transfer module user's guide[EB/OL]. (2013-11-01)[2017-03-05]. http://www.comsol.com/support/knowledgebase. [11] COMSOL. Structural mechanics module user's guide[EB/OL]. (2013-11-01)[2017-3-05]. http://www.comsol.com/support/knowledgebase. [12] GRIGOROPOULOS C P. Transport in laser microfabrication[M].New York, USA:Cambridge University Press, 2009:60-84. [13] GAO Y H, AN Zh Y, LI L J, et al. Research on beam shaping for high-order gaussian beam[J]. Optics & Optoelectronic Technology, 2011, 9(5):61-64(in Chinese). [14] QIN S J, LI W J. Micromachining of complex channel systems in 3-D quartz substrates using Q-switched Nd:YAG laser[J]. Applied Physics, 2002, A74(6):773-777. [15] LI Sh X, BAI Zh Ch, QIN Sh J. Researche on the fabrication of micro channels in fused silica substrates by nanosecond laser[J].Laser & Optoelectronics Progress, 2012, 49(2):041401(in Chinese). [16] ZHAI L B, ZHAO H L, CHEN J M. The microfabrication of microchannel on glass with frequency tripled Nd:YAG laser[J]. Applied Laser, 2006, 26(6):365-368(in Chinese). [17] LI Sh X, BAI Zh Ch, HUANG Zh, et al. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma[J]. Acta Physica Sinica, 2012, 61(11):115201(in Chinese).