高级检索

一种收发隔离光学系统的设计

马拥华, 马建军

马拥华, 马建军. 一种收发隔离光学系统的设计[J]. 激光技术, 2018, 42(1): 117-120. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.023
引用本文: 马拥华, 马建军. 一种收发隔离光学系统的设计[J]. 激光技术, 2018, 42(1): 117-120. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.023
MA Yonghua, MA Jianjun. Design of a transmitting-receiving isolation optical system[J]. LASER TECHNOLOGY, 2018, 42(1): 117-120. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.023
Citation: MA Yonghua, MA Jianjun. Design of a transmitting-receiving isolation optical system[J]. LASER TECHNOLOGY, 2018, 42(1): 117-120. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.023

一种收发隔离光学系统的设计

详细信息
    作者简介:

    马拥华(1989-), 男, 硕士研究生, 助理工程师, 主要从事光学设计与调试方面的研究

    通讯作者:

    马建军, E-mail:m-j-j@163.com

  • 中图分类号: TN202

Design of a transmitting-receiving isolation optical system

  • 摘要: 为了实现高隔离度的收发隔离,采用一种偏振收发隔离光学系统,利用琼斯矩阵进行了理论分析,验证了偏振隔离在收发同轴光学系统中的可行性。采取空间隔离来抑制回波进入接收系统,研究了模拟系统中偏振分束镜前表面楔角大小对收发隔离度的影响。结果表明,在达到一定楔角时,可取得100dB收发隔离度。这一结果对收发同轴光学系统的设计具有一定指导意义。
    Abstract: In order to achieve high-degree isolation in a transceiver system, an isolation optical system was put forward based on polarization and analyzed by means of Jones matrix. The feasibility of polarization isolation in a coaxial optical transceiver was verified. The space separation was used to suppress the echo into the receiving system. The influence of the wedge angle of polarization beam splitter on transmitting-receiving isolation was studied. The results show that, the transmitting-receiving isolation of 100dB is achieved with a certain wedge angle. The results will be of guiding significance for the design of transmitting-receiving coaxial optical systems.
  • Figure  1.   Schematic diagram of a polarization isolation optical system

    Figure  2.   Simulation model of the echoes in a transmitting-reciving isolation system

    Figure  3.   Light intensity distribution received by the detectors at different parameters

    a—0mrad, 1.8×10-5W, 47.3dB b—3.5mrad, 3.01×10-7W, 65.21dB c—3.98mrad, 1.07×10-9W, 89.70dB d—3.99mrad, 5.06×10-13W, 122.96dB

  • [1]

    YAN X B, YAN W P. Vertical multi-layer LED-induced fluorescence detection system[J]. Instrument Technique and Sensor, 2015(3):66-68(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ybjsycgq201503021

    [2]

    WANG L, ZHAO H B, YU J Z, et al. Passive and active combined LADAR system design and simulation[J]. Infrared and Laser Engineering, 2015, 44(s1):68-72(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2015z1013

    [3]

    MANSOUR A, MESLEH R, ABAZA M. New challenges in wireless and free space optical communications[J]. Optics and Lasers in Engineering, 2017, 89:95-108. DOI: 10.1016/j.optlaseng.2016.03.027

    [4]

    LÜ J, MA X L, HE Y H, et al. Simulation test and inhibit method of forward scattered stray light of polarized beam split optical antenna[J]. Acta Photonica Sinica, 2015, 45(4):406002(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gzxb201604012

    [5]

    GAO P, HU Y H, ZHAO N X, et al. Laser ranging precision in sending and receiving coaxial optical system in indoor instance[J]. Infrared and Laser Engineering, 2014, 43(3):915-919(in Chinese). http://d.wanfangdata.com.cn/Periodical/hwyjggc201403044

    [6]

    TAO H R, ZHANG F M, QU X H. Experimental study of backscattering signals from rough targets in non-cooperative laser measurement system[J]. Infrared and Laser Engineering, 2014, 43(s1):95-100(in Chinese). http://d.wanfangdata.com.cn/Periodical_hwyjggc2014z1017.aspx

    [7]

    CHEN H Y, HAN Y B. Overview of free space optical communication technology[J]. Guangxi Communication Technology, 2010(1):39-42(in Chinese).

    [8]

    SONG Y L, NI R G. Research into transmitter-receiver isolation technique of radar countermeasure system[J]. Shipboard Electronic Countermeasure, 2012, 35(1):20-24(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JCDZ201201004.htm

    [9]

    WANG J M, WU F Q, KONG W J, et al. Analysis of isolation performance of wave type optical isolator[J]. Acta Photonica Sinica, 2004, 33(7):830-834(in Chinese).

    [10]

    YAN J X, WEI G H, HA L Z. Matrix optics[M]. Beijing:Ordnance Industry Press, 1995:51-100(in Chinese).

    [11]

    YE D M, XIE L M, CHEN J. Ground simulation analysis of satellite-ground optical communication based on tracking error compensation[J]. Laser Technology, 2012, 36(3):346-348(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201203016.htm

    [12]

    LIU B, WANG J Sh, YANG Z H, et al. Study on non-line-of-sight infrared laser scattering communication in atmosphere[J]. Laser Technology, 2014, 38(6):854-858(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGJS201406028.htm

    [13]

    WANG B, FEI J Ch, CUI Zh F, et al. Research of degree of polarization of PCELG beam progagation through a circular aperture[J]. Laser Technology, 2013, 37(5):672-678(in Chinese).

    [14]

    YANG J, WANG H, ZHANG X. Influence of atmospheric turbulence on Rayleigh range of partially coherent laser[J]. Laser Technology, 2016, 40(3):456-460(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201603033.htm

    [15]

    YAO M, ZHANG L, XU C W, et al. Modeling and simulation of slant path scattering of 1.064μm laser in atmosphere[J]. Laser Technology, 2012, 36(3):394-397(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201203029.htm

图(3)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 修回日期:  2017-04-12
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回