High power ultraviolet pulsed lasers based on LBO crystal
-
摘要: 为了获得高功率、高重复频率的紫外脉冲激光器,采用1064nm基频光通过三硼酸锂(LBO)晶体与3次谐波355nm进行和频得到4次谐波266nm紫外激光的方法,进行了实验验证,取得了重复频率为20kHz、紫外激光器的平均输出功率为2.5W、红外到紫外的转换效率为12.5%的实验数据。结果表明,此脉冲激光器利用LBO晶体在高重复频率下取得了较大的紫外平均输出功率。Abstract: In order to achieve the ultraviolet pulsed laser with the high power and high frequency, the fourth harmonic 266nm in LiB3O5 (LBO)crystal was generated by frequency mixing of the fundamental(1064nm) and third harmonic (355nm) of electro-optical Q-switched laser, and experiment verification was carried out. Deep ultraviolet (UV) output power of 2.5W at 266nm with the repetition rate at 20kHz and 12.5% infrared(IR)-to-UV conversion efficiency were achieved. The result show that the pulse laser has achieved a large average output power at high repetition frequency by using LBO crystal.
-
-
Table 1 Characteristics of LBO crystal
crystal PM type PM scheme walk-off angle[13] PM angle PM temperature dimensions SHG LBO Ⅰ οz, ω+οz, ω→exy, 2ω 0mrad θ=90°, φ=0° 148℃ 3mm×3mm×20mm THG LBO Ⅱ οz, ω+exy, 2ω→οz, 3ω 10mrad θ=47°, φ=90° 60℃ 3mm×3mm×15mm FHG LBO Ⅰ οz, ω+οz, 3ω→exy, 4ω 16mrad θ=90°, φ=61° 140℃ 3mm×3mm×20mm Table 2 Antireflection coating of optical components
LBO crystals lenses SHG LBO THG LBO FHG LBO L1(f=35mm) L2(f=57mm) L3(f=57mm) input output input output input output input output input output input output AR 1064nm/532nm uncoated uncoated AR 1064nm AR 1064nm/532nm AR 355nm -
[1] LI Q, THOMAS RUCKSTUHL A, SEEGER S. Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules[J]. Journal of Physical Chemistry, 2004, B108(24):8324-8329. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78a2223db963400523d577af87b1198a
[2] LE H R, KÖNIG K, WVLLNER C, et al. Ultraviolet femtosecond laser creation of corneal flap[J]. Journal of Refractive Surgery, 2009, 25(4):383-389. DOI: 10.3928/1081597X-20090401-08
[3] PARK S J, SONG J H, LEE G A. Analysis of UV laser machining process for high density embedded IC substrates[J].Advanced Materials Research, 2012, 630(5):171-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.630.171
[4] ORTHAUS S, KÖNIG M, SCHÖNAU T, et al. Crossing the limit towards deep UV[J]. Optik & Photonik, 2013, 8(1):33-36. DOI: 10.1002/opph.201300001/abstract
[5] KONG L R, ZHANG F, DUAN J, et al. Research of water-assisted laser etching of alumina ceramics[J]. Laser Technology, 2014, 38(3):330-334(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201403010
[6] CHEN C, LUO S, WANG X, et al. Deep UV nonlinear optical crystal:RbBe2BO3F2[J]. Journal of the Optical Society of America, 2009, B26(8):1519-1525. http://d.old.wanfangdata.com.cn/Periodical/rgjtxb98200101004
[7] WANG Y, WANG L, GAO X, et al. Growth, characterization and the fourth harmonic generation at 266nm of K2Al2B2O7 crystals without UV absorptions and Na impurity[J]. Journal of Crystal Growth, 2012, 348(1):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96eacce554c5e8282e27f918db784f94
[8] WANG L, ZHAI N, LIU L, et al. High-average-power 266nm generation with a KBe2BO3F2 prism-coupled device[J]. Optics Express, 2014, 22(22):27086-27090. DOI: 10.1364/OE.22.027086
[9] CHAITANYA K S, CANALS C J, SANCHEZ B E, et al. Yb-fiber-laser-based, 1.8W average power, picosecond ultraviolet source at 266nm[J]. Optics Letters, 2015, 40(10):2397-2400. DOI: 10.1364/OL.40.002397
[10] YANG S T, HENESIAN M A, WEILAND T L, et al. Noncritically phase-matched fourth harmonic generation of Nd:glass lasers in partially deuterated KDP crystals[J]. Optics Letters, 2011, 36(10):1824-1828. DOI: 10.1364/OL.36.001824
[11] ZHENG B R, YAO Y Ch, HUANG Ch Y. Experiment of double-end-pumped intra-cavity triple frequency ultraviolet laser[J].Laser Technology, 2013, 37(2):155-157(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201302005
[12] CHEN C. Chinese lab grows new nonlinear optical borate crystals[J]. Laser Focus World, 1989, 25(11):129-137.
[13] SMITH A V. Software for calculated "SNLO version_52."[CP/OL]. (2000-02-15)[2009-06-12]. http://www.sandia.gov/pcnsc/departments/lasers/snlo-software.html.
[14] MÖLLER S, ANDRESEN A, MERSCHJANN C, et al. Insight to UV-induced formation of laser damage on LiB3O5 optical surfaces during long-term sum-frequency generation[J]. Optics Express, 2007, 15(12):7351-7356. DOI: 10.1364/OE.15.007351
[15] HONG H, LIU Q, HUANG L, et al. Improvement and formation of UV-induced damage on LBO crystal surface during long-term high-power third-harmonic generation[J]. Optics Express, 2013, 21(6):7285-7293. DOI: 10.1364/OE.21.007285