-
获得266nm的紫外激光输出需要具有高单脉冲能量,窄脉冲宽度1064nm基频光。实验的光路如图 1所示。基于Bright Solutions公司商用Onda电光(electro-optic,E-O)调Q脉冲激光器,可以获得脉冲宽度为8ns的1064nm激光输出,光束质量因子M2 < 1.5, 在重复频率为20kHz时最大的平均输出功率可达20W。
图 1中ω表示基频的光波,2ω表示2次谐波,以此类推。基频光1064nm经过透镜L1在第1个LBO晶体进行倍频(SHG)得到532nm的输出光,再通过透镜L2后基频光1064nm和倍频光532nm经过THG LBO晶体和频得到3次谐波355nm,最后通过透镜L3基频光1064nm与3次谐波355nm在FHG LBO晶体相互作用得到4次谐波266nm的紫外激光输出。SHG LBO晶体采用的相位匹配(phase-matching,PM)方式是Ⅰ类非临界相位匹配(non critical phase matc-hing,NCPM), 匹配温度是148℃,其走离角近似为0mrad,晶体尺寸为3mm × 3mm × 20mm;THG LBO是Ⅱ类角度相位匹配,匹配角θ=47°, φ=90°;FHG LBO是Ⅰ类角度相位匹配,匹配角θ=90°, φ=61°。3个晶体具体参量见表 1,其中οz, ω表示入射光为慢光偏振态,偏振方向沿着z轴;exy, 2ω表示产生的2次谐波是快光偏振态,偏振方向在x-y平面;下标ω表示基频的光波,2ω表示2次谐波,以此类推。
Table 1. Characteristics of LBO crystal
crystal PM type PM scheme walk-off angle[13] PM angle PM temperature dimensions SHG LBO Ⅰ οz, ω+οz, ω→exy, 2ω 0mrad θ=90°, φ=0° 148℃ 3mm×3mm×20mm THG LBO Ⅱ οz, ω+exy, 2ω→οz, 3ω 10mrad θ=47°, φ=90° 60℃ 3mm×3mm×15mm FHG LBO Ⅰ οz, ω+οz, 3ω→exy, 4ω 16mrad θ=90°, φ=61° 140℃ 3mm×3mm×20mm 光束通过分光棱镜后,基频光1064nm、倍频光532nm、3次谐波355nm被光学吸收器转化为热能, 从而266nm紫外激光输出,通过光电探测器和功率计测出266nm的脉冲宽度和平均输出功率。L1, L2, L3聚焦透镜的作用是把输出光汇聚在LBO晶体的中心点,LBO晶体和聚焦透镜镀减反膜(anti-reflection,AR)的参量见表 2。SHG LBO晶体入射面和出射面镀对1064nm/532nm波长的减反膜,聚焦透镜L1入射面和出射面镀对1064nm波长的减反膜,L2入射面和出射面镀对1064nm/532nm波长的减反膜,L3入射面和出射面镀对355nm波长的减反膜,THG LBO和FHG LBO两个晶体无需镀膜。
Table 2. Antireflection coating of optical components
LBO crystals lenses SHG LBO THG LBO FHG LBO L1(f=35mm) L2(f=57mm) L3(f=57mm) input output input output input output input output input output input output AR 1064nm/532nm uncoated uncoated AR 1064nm AR 1064nm/532nm AR 355nm
基于三硼酸锂晶体高功率紫外脉冲激光器
High power ultraviolet pulsed lasers based on LBO crystal
-
摘要: 为了获得高功率、高重复频率的紫外脉冲激光器,采用1064nm基频光通过三硼酸锂(LBO)晶体与3次谐波355nm进行和频得到4次谐波266nm紫外激光的方法,进行了实验验证,取得了重复频率为20kHz、紫外激光器的平均输出功率为2.5W、红外到紫外的转换效率为12.5%的实验数据。结果表明,此脉冲激光器利用LBO晶体在高重复频率下取得了较大的紫外平均输出功率。Abstract: In order to achieve the ultraviolet pulsed laser with the high power and high frequency, the fourth harmonic 266nm in LiB3O5 (LBO)crystal was generated by frequency mixing of the fundamental(1064nm) and third harmonic (355nm) of electro-optical Q-switched laser, and experiment verification was carried out. Deep ultraviolet (UV) output power of 2.5W at 266nm with the repetition rate at 20kHz and 12.5% infrared(IR)-to-UV conversion efficiency were achieved. The result show that the pulse laser has achieved a large average output power at high repetition frequency by using LBO crystal.
-
Table 1. Characteristics of LBO crystal
crystal PM type PM scheme walk-off angle[13] PM angle PM temperature dimensions SHG LBO Ⅰ οz, ω+οz, ω→exy, 2ω 0mrad θ=90°, φ=0° 148℃ 3mm×3mm×20mm THG LBO Ⅱ οz, ω+exy, 2ω→οz, 3ω 10mrad θ=47°, φ=90° 60℃ 3mm×3mm×15mm FHG LBO Ⅰ οz, ω+οz, 3ω→exy, 4ω 16mrad θ=90°, φ=61° 140℃ 3mm×3mm×20mm Table 2. Antireflection coating of optical components
LBO crystals lenses SHG LBO THG LBO FHG LBO L1(f=35mm) L2(f=57mm) L3(f=57mm) input output input output input output input output input output input output AR 1064nm/532nm uncoated uncoated AR 1064nm AR 1064nm/532nm AR 355nm -
[1] LI Q, THOMAS RUCKSTUHL A, SEEGER S. Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules[J]. Journal of Physical Chemistry, 2004, B108(24):8324-8329. [2] LE H R, KÖNIG K, WVLLNER C, et al. Ultraviolet femtosecond laser creation of corneal flap[J]. Journal of Refractive Surgery, 2009, 25(4):383-389. doi: 10.3928/1081597X-20090401-08 [3] PARK S J, SONG J H, LEE G A. Analysis of UV laser machining process for high density embedded IC substrates[J].Advanced Materials Research, 2012, 630(5):171-174. [4] ORTHAUS S, KÖNIG M, SCHÖNAU T, et al. Crossing the limit towards deep UV[J]. Optik & Photonik, 2013, 8(1):33-36. [5] KONG L R, ZHANG F, DUAN J, et al. Research of water-assisted laser etching of alumina ceramics[J]. Laser Technology, 2014, 38(3):330-334(in Chinese). [6] CHEN C, LUO S, WANG X, et al. Deep UV nonlinear optical crystal:RbBe2BO3F2[J]. Journal of the Optical Society of America, 2009, B26(8):1519-1525. [7] WANG Y, WANG L, GAO X, et al. Growth, characterization and the fourth harmonic generation at 266nm of K2Al2B2O7 crystals without UV absorptions and Na impurity[J]. Journal of Crystal Growth, 2012, 348(1):1-4. [8] WANG L, ZHAI N, LIU L, et al. High-average-power 266nm generation with a KBe2BO3F2 prism-coupled device[J]. Optics Express, 2014, 22(22):27086-27090. doi: 10.1364/OE.22.027086 [9] CHAITANYA K S, CANALS C J, SANCHEZ B E, et al. Yb-fiber-laser-based, 1.8W average power, picosecond ultraviolet source at 266nm[J]. Optics Letters, 2015, 40(10):2397-2400. doi: 10.1364/OL.40.002397 [10] YANG S T, HENESIAN M A, WEILAND T L, et al. Noncritically phase-matched fourth harmonic generation of Nd:glass lasers in partially deuterated KDP crystals[J]. Optics Letters, 2011, 36(10):1824-1828. doi: 10.1364/OL.36.001824 [11] ZHENG B R, YAO Y Ch, HUANG Ch Y. Experiment of double-end-pumped intra-cavity triple frequency ultraviolet laser[J].Laser Technology, 2013, 37(2):155-157(in Chinese). [12] CHEN C. Chinese lab grows new nonlinear optical borate crystals[J]. Laser Focus World, 1989, 25(11):129-137. [13] SMITH A V. Software for calculated "SNLO version_52."[CP/OL]. (2000-02-15)[2009-06-12]. http://www.sandia.gov/pcnsc/departments/lasers/snlo-software.html. [14] MÖLLER S, ANDRESEN A, MERSCHJANN C, et al. Insight to UV-induced formation of laser damage on LiB3O5 optical surfaces during long-term sum-frequency generation[J]. Optics Express, 2007, 15(12):7351-7356. doi: 10.1364/OE.15.007351 [15] HONG H, LIU Q, HUANG L, et al. Improvement and formation of UV-induced damage on LBO crystal surface during long-term high-power third-harmonic generation[J]. Optics Express, 2013, 21(6):7285-7293. doi: 10.1364/OE.21.007285