高级检索

基于三硼酸锂晶体高功率紫外脉冲激光器

卢一鑫, 杨森林, 赵小侠, 张变莲

卢一鑫, 杨森林, 赵小侠, 张变莲. 基于三硼酸锂晶体高功率紫外脉冲激光器[J]. 激光技术, 2018, 42(1): 100-103. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.019
引用本文: 卢一鑫, 杨森林, 赵小侠, 张变莲. 基于三硼酸锂晶体高功率紫外脉冲激光器[J]. 激光技术, 2018, 42(1): 100-103. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.019
LU Yixin, YANG Senlin, ZHAO Xiaoxia, ZHANG Bianlian. High power ultraviolet pulsed lasers based on LBO crystal[J]. LASER TECHNOLOGY, 2018, 42(1): 100-103. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.019
Citation: LU Yixin, YANG Senlin, ZHAO Xiaoxia, ZHANG Bianlian. High power ultraviolet pulsed lasers based on LBO crystal[J]. LASER TECHNOLOGY, 2018, 42(1): 100-103. DOI: 10.7510/jgjs.issn.1001-3806.2018.01.019

基于三硼酸锂晶体高功率紫外脉冲激光器

基金项目: 

国家自然科学基金资助项目 61401356

详细信息
    作者简介:

    卢一鑫(1982-), 男, 实验师, 现从事非线性光学、光电子器件的研究工作。E-mail:tongy1982@163.com

  • 中图分类号: TN248.1;O437.1

High power ultraviolet pulsed lasers based on LBO crystal

  • 摘要: 为了获得高功率、高重复频率的紫外脉冲激光器,采用1064nm基频光通过三硼酸锂(LBO)晶体与3次谐波355nm进行和频得到4次谐波266nm紫外激光的方法,进行了实验验证,取得了重复频率为20kHz、紫外激光器的平均输出功率为2.5W、红外到紫外的转换效率为12.5%的实验数据。结果表明,此脉冲激光器利用LBO晶体在高重复频率下取得了较大的紫外平均输出功率。
    Abstract: In order to achieve the ultraviolet pulsed laser with the high power and high frequency, the fourth harmonic 266nm in LiB3O5 (LBO)crystal was generated by frequency mixing of the fundamental(1064nm) and third harmonic (355nm) of electro-optical Q-switched laser, and experiment verification was carried out. Deep ultraviolet (UV) output power of 2.5W at 266nm with the repetition rate at 20kHz and 12.5% infrared(IR)-to-UV conversion efficiency were achieved. The result show that the pulse laser has achieved a large average output power at high repetition frequency by using LBO crystal.
  • Figure  1.   Experimental setup of 266nm UV pulsed laser

    Figure  2.   Dependence of conversion efficiency of SHG(1064nm+1064nm→532nm) and THG(1064nm+532nm→355nm) on temperature of the SHG LBO crystal

    Figure  3.   Relationship between 266nm output UV power and 1064nm fundamental radiation power

    Figure  4.   The experimental and theoretical curves of relationship between FHG LBO temperature and acceptance bandwidth at 266nm

    Figure  5.   Pulse width of 266nm ultraviolet light with repetition rate of 20kHz

    Figure  6.   Far-field energy distribution of 266nm UV beam

    Figure  7.   Power stability of the generated UV output power of 0.5W, 1W and 2.5W based on LBO

    Figure  8.   Magnified image of the degraded LBO crystals

    Table  1   Characteristics of LBO crystal

    crystal PM type PM scheme walk-off angle[13] PM angle PM temperature dimensions
    SHG LBO οz, ω+οz, ωexy, 2ω 0mrad θ=90°, φ=0° 148℃ 3mm×3mm×20mm
    THG LBO οz, ω+exy, 2ωοz, 3ω 10mrad θ=47°, φ=90° 60℃ 3mm×3mm×15mm
    FHG LBO οz, ω+οz, 3ωexy, 4ω 16mrad θ=90°, φ=61° 140℃ 3mm×3mm×20mm
    下载: 导出CSV

    Table  2   Antireflection coating of optical components

    LBO crystals lenses
    SHG LBO THG LBO FHG LBO L1(f=35mm) L2(f=57mm) L3(f=57mm)
    input output input output input output input output input output input output
    AR 1064nm/532nm uncoated uncoated AR 1064nm AR 1064nm/532nm AR 355nm
    下载: 导出CSV
  • [1]

    LI Q, THOMAS RUCKSTUHL A, SEEGER S. Deep-UV laser-based fluorescence lifetime imaging microscopy of single molecules[J]. Journal of Physical Chemistry, 2004, B108(24):8324-8329. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=78a2223db963400523d577af87b1198a

    [2]

    LE H R, KÖNIG K, WVLLNER C, et al. Ultraviolet femtosecond laser creation of corneal flap[J]. Journal of Refractive Surgery, 2009, 25(4):383-389. DOI: 10.3928/1081597X-20090401-08

    [3]

    PARK S J, SONG J H, LEE G A. Analysis of UV laser machining process for high density embedded IC substrates[J].Advanced Materials Research, 2012, 630(5):171-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMR.630.171

    [4]

    ORTHAUS S, KÖNIG M, SCHÖNAU T, et al. Crossing the limit towards deep UV[J]. Optik & Photonik, 2013, 8(1):33-36. DOI: 10.1002/opph.201300001/abstract

    [5]

    KONG L R, ZHANG F, DUAN J, et al. Research of water-assisted laser etching of alumina ceramics[J]. Laser Technology, 2014, 38(3):330-334(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201403010

    [6]

    CHEN C, LUO S, WANG X, et al. Deep UV nonlinear optical crystal:RbBe2BO3F2[J]. Journal of the Optical Society of America, 2009, B26(8):1519-1525. http://d.old.wanfangdata.com.cn/Periodical/rgjtxb98200101004

    [7]

    WANG Y, WANG L, GAO X, et al. Growth, characterization and the fourth harmonic generation at 266nm of K2Al2B2O7 crystals without UV absorptions and Na impurity[J]. Journal of Crystal Growth, 2012, 348(1):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=96eacce554c5e8282e27f918db784f94

    [8]

    WANG L, ZHAI N, LIU L, et al. High-average-power 266nm generation with a KBe2BO3F2 prism-coupled device[J]. Optics Express, 2014, 22(22):27086-27090. DOI: 10.1364/OE.22.027086

    [9]

    CHAITANYA K S, CANALS C J, SANCHEZ B E, et al. Yb-fiber-laser-based, 1.8W average power, picosecond ultraviolet source at 266nm[J]. Optics Letters, 2015, 40(10):2397-2400. DOI: 10.1364/OL.40.002397

    [10]

    YANG S T, HENESIAN M A, WEILAND T L, et al. Noncritically phase-matched fourth harmonic generation of Nd:glass lasers in partially deuterated KDP crystals[J]. Optics Letters, 2011, 36(10):1824-1828. DOI: 10.1364/OL.36.001824

    [11]

    ZHENG B R, YAO Y Ch, HUANG Ch Y. Experiment of double-end-pumped intra-cavity triple frequency ultraviolet laser[J].Laser Technology, 2013, 37(2):155-157(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201302005

    [12]

    CHEN C. Chinese lab grows new nonlinear optical borate crystals[J]. Laser Focus World, 1989, 25(11):129-137.

    [13]

    SMITH A V. Software for calculated "SNLO version_52."[CP/OL]. (2000-02-15)[2009-06-12]. http://www.sandia.gov/pcnsc/departments/lasers/snlo-software.html.

    [14]

    MÖLLER S, ANDRESEN A, MERSCHJANN C, et al. Insight to UV-induced formation of laser damage on LiB3O5 optical surfaces during long-term sum-frequency generation[J]. Optics Express, 2007, 15(12):7351-7356. DOI: 10.1364/OE.15.007351

    [15]

    HONG H, LIU Q, HUANG L, et al. Improvement and formation of UV-induced damage on LBO crystal surface during long-term high-power third-harmonic generation[J]. Optics Express, 2013, 21(6):7285-7293. DOI: 10.1364/OE.21.007285

图(8)  /  表(2)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-19
  • 修回日期:  2017-03-08
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回