Dispersion characteristics analysis of photonic crystal fibers based on structure parameters and filling modes
-
摘要: 为了获得色散平坦特性良好的光子晶体光纤,采用有限元法进行了理论分析和实验验证,取得了有效折射率、色散系数随波长的变化数据。当空气孔直径d=1.6μm、孔间距Λ=2μm时,在1.2μm~2.1μm波段内,色散平坦特性较好,且在1550nm波长处的色散系数值为108.20ps/(nm·km),并在此结构基础上,研究了填充材料、不同填充方式对色散特性的影响。结果表明,采用"十"字形的填充方式获得的色散特性更好,当采取普通酒精为填充材料时,波长在1550nm处的色散系数值可以减小到20.39ps/(nm·km),接近G.652标准单模光纤在1550nm处的色散系数值。这一结果对光通信领域的研究是有帮助的。Abstract: In order to obtain photonic crystal fibers with good dispersion characteristics, by the finite element method, the theoretical analysis and experimental verification were carried out, and the effective index of refraction and dispersion coefficient with the change of wavelength were obtained. According to the analysis results, when the hole diameter d=1.6μm and the hole spacing Λ=2μm, the dispersion flatness is better in the 1.2μm~2.1μm band and the dispersion coefficient is 108.20ps/(nm·km) at the wavelength of 1550nm. Based on this structure, effect of different filling modes and filling material on the dispersion characteristics was studied. The results show that better dispersion characteristics are obtained for the "十" shape filling method, and that when ordinary alcohol is used as filling material, the dispersion coefficient at the wavelength of 1550nm can be reduced to 20.39ps/(nm·km), which is close to that of a G.652 single mode fiber at 1550nm. This result is helpful for research in the optical communication field.
-
-
Table 1 Dispersion coefficient corresponding to different air hole diameter at 1550nm wavelength
d/μm 0.8 1.0 1.2 1.4 1.6 D/(ps·nm-1·km-1) 26.30 55.82 77.54 95.40 108.20 Table 2 Dispersion coefficient with different air hole spacing at 1550nm wavelength
Λ/μm 1.2 1.4 1.6 1.8 2.0 2.2 2.4 D/(ps·nm-1·
km-1)26.03 90.03 109.32 112.33 108.20 103.62 97.60 -
[1] KNIGHT J, BIRKS T, RUSSELL P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19):1547-1549. DOI: 10.1364/OL.21.001547
[2] LI X Y, XU Z L, LING W W, et al. Numerical simulation and analysis of photonic crystal fiber with high nonlinearity and flattened chromatic dispersion[J]. Chinese Journal of Lasers, 2014, 41(5):0505003(in Chinese). DOI: 10.3788/CJL
[3] YU X L, ZHANG Z B, QU Y, et al. Research of long period bending photonic crystal fiber grating sensors[J]. Laser Technology, 2015, 39(4):571-575(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201504032
[4] ZHEN H L. Polarization filters based on high birefringence photonic crystal fiber filled with Au[J]. Laser Technology, 2016, 40(1):1-4(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201601001.htm
[5] YANG J, LIU M, ZHU M, et al. Three-core photonic crystal fiber with zero intermodal dispersion[J]. Laser Technology, 2015, 39(4):528-532(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201504022
[6] LI J, GU Y H, CAI X B. Dispersion analysis of photonic crystal fiber with varying air hole[J]. Optical Communication Technology, 2010, 4(2):30-32(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtxjs201002010
[7] WU J Q, XUE W R, ZHOU G Sh. Dispersion property analysis of square lattice varying microstructured optical fiber[J]. Acta Optica Sinica, 2005, 25(2):174-178(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXXB200502006.htm
[8] ZHAO J D, ZHANG W M, XUE W R. Dispersion properties of photonic crystal fiber with composite square air hole lattice[J]. Acta Sinica Quantum Optica, 2009, 15(1):53-57(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lzgxxb200901011
[9] GONG T X, FENG L, HU J J, et al. Photonic crystal fibers with high and flattened dispersion[J].Optics Communications, 2011, 284(18):4176-4179. DOI: 10.1016/j.optcom.2011.04.057
[10] KARASAWA N. Dispersion properties of liquid crystal core photonic crystal fibers calculated by a multipole method modified for anisotropic inclusions[J]. Optics Communications, 2015, 338(5):123-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=764c5dfbd5bdb7a0f75348810425064d
[11] KONG X M, LI X L, JIANG X F, et al. Dual core photonic crystal fiber with large negative dispersion[J]. Acta Sinica Quantum Optica, 2015, 21(4):380-384(in Chinese). DOI: 10.3788/ASQO
[12] HOU Y, ZHOU G Y, HOU L T, et al. Dispersion characteristics of octagonal double cladding photonic crystal fiber[J]. Chinese Journal of Lasers, 2010, 37(4):1068-1072(in Chinese). DOI: 10.3788/CJL
[13] LI Sh G, LIU X D, HOU L T. The study of waveguide mode and dispersion property in photonic crystal fibers[J]. Acta Physica Sinica, 2003, 52(11):2811-2817(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLXB200311027.htm
[14] ALBERT F, ENRIQUE S, JUAN J M, et al. Vector description of higher order modes in photonic crystal fibers[J]. Journal of the Optical Society of America, 2000, 17(7):1333-1340. DOI: 10.1364/JOSAA.17.001333
[15] BROENG J, MOGILEVSTE V D, BARKOU S E. Photonic crystal fibers:a new class of optical waveguides[J]. Optical Fiber Technology, 1999, 5(3):305-330. DOI: 10.1006/ofte.1998.0279
[16] KOSHIBA M. Full-vector analysis of photonic crystal fibers using finite element method[J]. IEICE Transactions on Electronics, 2002, 85(4):881-888. http://www.sciencedirect.com/science/article/pii/S030645220600515X
[17] SAGHAEI H, MORAVVEI-FARSHI M K, EBNALI-HEIDARI M, et al. Ultra-wide mid-Infrared supercontinuum generation in As40Se60 chalcogenide fibers:solid core PCF versus SIF[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(2):1-8. DOI: 10.1109/JSTQE.2016.2537278
[18] HALIME D I, SEDAT O. Birefringence, dispersion and loss properties for PCFs with rectangular air-holes[J]. Infrared Physics & Technology, 2014, 67(6):354-358. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8855d87a5c537791984b8e20a7984454
[19] GUO Y, RUAN Sh Ch.Analysis on the dispersion properties of photonic crystal fiber with an air-hole defect core[J].Journal of Shenzhen University Science and Engineering, 2010, 27(4):386-390(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=szdxxb201004002
[20] DIAZ-SORIANO A, ORTIZ-MORA A, DENGRA A. A new low-dispersion and large-effective-area PCF based on a fractal design[J]. Optical Fiber Technology, 2015, 21(1):69-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea957f1d6cde6b6ddb522e0e536a5ac4
[21] DAI N L, LI Y, PENG J G, et al. Development of dispersion-flattened photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2011, 48(1):010602(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100016738