-
本文中对被测样品分别进行1-on-1和S-on-1两种测量方式的实验。
1-on-1测量又称为单脉冲损伤测量,是指同一能量密度的激光辐照在样品上的多个测试点,然后统计发生损伤的测试点个数,计算损伤几率。改变激光能量密度,再测出损伤几率,根据零几率损伤阈值获得方法求取该样品的损伤阈值[15]。采用1-on-1测量方式时,每个测试点仅辐照一次,无论是否发生损伤,都移至下一个未被辐照的测试点,如图 2a所示。
S-on-1测量又称为多脉冲损伤测量,是重复激光脉冲能量辐照在样品表面的累计损伤效应,即同一能量密度的多个脉冲辐照在同一测试点上进行测量[16-17],如图 2b所示。
-
采用不同能量密度的激光对样品进行单脉冲辐照测量,每个能量密度辐照20个间距为2mm的测试点,每个测试点仅辐照一次,通过控制样品工作台平移实现测试点的移动。采用二分法查找辐照激光能量,找到损伤几率非0%非100%的测量点,然后按照能量递增或递减的顺序进行辐照测量,应用零几率损伤阈值确定测量结果。
在与被测薄膜表面等效的位置测得辐照在薄膜表面的光斑直径为825μm,采用辐照激光能量密度计算软件计算得到光斑面积为5.35×10-3cm2,并计算出每次辐照的激光能量密度。表 1中列出了辐照的不同激光能量密度及其对应的损伤几率, *表示拟合可用数据。
Table 1. Measurement data of 1-on-1 measurement mode
energy density/(J·cm-2) damage probability/% 1 3.0 0 2 70.0 100 3 36.5 100 4* 19.75 40 5* 20.75 50 6* 21.75 65 7* 22.75 75 8* 23.75 90 9 24.75 100 10* 18.75 30 11* 17.75 25 12* 16.75 10 13 15.75 0 -
采用不同能量密度的激光对样品进行多脉冲辐照测量,每个能量密度辐照20个间距为2mm的测试点,每个测试点辐照1000次,若辐照次数未达到1000次就已判定损伤发生,则通过控制2维运动工作台的移动,对下一个测试点进行多脉冲辐照测量。采用二分法查找辐照激光能量,找到损伤几率非0%、非100%的测量点,然后按照能量递增或递减的顺序进行辐照测量,应用零几率损伤阈值确定测量结果。
在与被测薄膜表面等效的位置测得辐照在薄膜表面的光斑直径为890μm,采用辐照激光能量密度计算软件计算得到光斑面积为6.22×10-3cm2,并计算出每次辐照的激光能量密度。表 2中列出了辐照的不同激光能量密度及其对应的损伤几率, *表示拟合可用数据。
Table 2. Measurement data of S-on-1 measurement mode
energy density/(J·cm-2) damage probability/% 1 3.0 0 2 42.0 100 3* 22.5 95 4* 21.5 90 5* 20.5 80 6* 19.5 70 7* 18.5 60 8* 17.5 45 9* 16.5 35 10* 15.5 30 11* 14.5 20 12* 13.5 15 13* 12.5 5 14 11.5 0 应用MATLAB对以上测量数据采用最小二乘法进行拟合,如图 4所示。拟合得到其损伤阈值为11.90J/cm2。
-
系统的测量误差主要来源于激光辐照能量的测量误差、光斑面积的测量误差、测量结果的拟合误差和损伤判识误差等。
-
该误差主要包括:两块分光镜的分光误差为1%;能量探测器的分辨率为1μJ;平顶光束的平顶度为93.66%;薄膜表面接收激光辐照,将吸收的激光能量转化成热能,导致薄膜表面温度升高,能量探测器测量的激光能量大于薄膜实际损伤所需能量,导致测量误差的产生。
-
光斑面积的测量是在样品表面的等效位置进行的,因此CCD靶面与样品表面位置等效的偏离是误差的主要来源。为了解决这一问题,在设计聚焦光学系统时,采用长焦距结构以增大系统的焦深,使CCD靶面在一定的调节范围内测得的光斑与样品表面光斑的大小相近。焦深的表达式为:
$ 2\Delta l^\prime = \frac{\mathit{\lambda }}{{n^\prime {\rm{si}}{{\rm{n}}^2}{U_{\rm{m}}}^\prime }} \approx \frac{{4\mathit{\lambda }{{f^\prime}^2}}}{{n\prime {D^2}}} $
(1) 式中,λ为工作波长,f'为系统焦距,n′为像空间介质折射率,Um′为像方最大孔径角,D为系统入瞳直径。对于一定波长的激光,当入射口径一定时,焦深近似与焦距的平方成正比。
从CCD角度来说,引起光斑面积测量误差的主要因素有CCD本身的分辨率误差、CCD的积分误差以及CCD的背景噪声。
-
采用最小二乘法进行曲线拟合时会产生一定的拟合误差,同时测量时选取能量等级的多少对拟合精度产生一定影响。为了减小拟合误差,尽量多选择测量激光能量等级,尤其是损伤几率为20%~60%之间的能量对拟合结果影响最大。
S-on-1测量方式下薄膜激光损伤的累积效应
Cumulative effect of thin film laser damage under S-on-1 measurement mode
-
摘要: 为了研究薄膜激光损伤机理及影响因素,基于平顶光束辐照测量的原理,采用1064nm的Nd:YAG激光器,对电子束热蒸发方式镀制的HfO2薄膜在重复频率激光作用下损伤的累积效应进行了理论分析和实验验证。运用损伤阈值的测量原理,分析了1-on-1和S-on-1两种测量方式的特点,并分别开展了测量实验。采用二分法查找辐照激光能量,每个能量密度辐照20个测试点,应用零几率损伤阈值和最小二乘法拟合确定测量结果。结果表明,对同种薄膜,1-on-1测量方式测得的损伤阈值为15.75J/cm2,S-on-1测量方式测得的损伤阈值为11.90J/cm2;从损伤阈值与损伤形貌两方面的对比表明,S-on-1测量方式体现了典型的累积效应。此结果对深入研究薄膜激光损伤的机理和影响因素具有重要意义。Abstract: In order to study the damage mechanism and influencing factors of laser thin films, the principle of radiation measurement based on flat top beam was proposed. The cumulative damage effect of HfO2 films processed by electron beam thermal evaporation under the repeated frequency laser irradiation was studied by using 1064nm Nd:YAG laser. After theoretical analysis and experimental verification, the characteristics of two measuring methods, 1-on-1 and S-on-1, were analyzed based on the measuring principle of damage threshold. The irradiation laser energy was seeked by dichotomy. Each energy density was irradiated at 20 test points. Zero probability damage threshold and least square method were used to fit and determine the measurement results. The results show that for the same kind of film, the damage threshold measured by 1-on-1 method is 15.75J/cm2 and the damage threshold measured by S-on-1 method is 11.90J/cm2. The comparison of damage threshold and damage morphology shows that S-on-1 measurement method reflects the typical cumulative effect. The study is of great importance for the study of laser damage mechanism and influencing factors of thin film.
-
Key words:
- thin films /
- damage threshold /
- measurement mode /
- cumulative effect /
- binary search /
- least square method
-
Table 1. Measurement data of 1-on-1 measurement mode
energy density/(J·cm-2) damage probability/% 1 3.0 0 2 70.0 100 3 36.5 100 4* 19.75 40 5* 20.75 50 6* 21.75 65 7* 22.75 75 8* 23.75 90 9 24.75 100 10* 18.75 30 11* 17.75 25 12* 16.75 10 13 15.75 0 Table 2. Measurement data of S-on-1 measurement mode
energy density/(J·cm-2) damage probability/% 1 3.0 0 2 42.0 100 3* 22.5 95 4* 21.5 90 5* 20.5 80 6* 19.5 70 7* 18.5 60 8* 17.5 45 9* 16.5 35 10* 15.5 30 11* 14.5 20 12* 13.5 15 13* 12.5 5 14 11.5 0 -
[1] CHANG Y H, JIN C Sh, LI Ch, et al. ArF excimer laser induced damage on high reflective fluoride film[J].Laser Technology, 2014, 38(3):302-306(in Chinese). [2] HSIAO F Y, WANG T H, LEE C C, et al. Trajectory of spacecraft with photonic laser propulsion in the two-body problem[J].Acta Astronautica, 2013, 84:215-226. doi: 10.1016/j.actaastro.2012.11.006 [3] XIA Z L, ZHAO Y A, HUANG G H, et al. Selecting energy density for laser preconditining optical films[J]. Acta Optica Sinica, 2009, 29(2):560-565(in Chinese). doi: 10.3788/AOS [4] KIRKWOOD S E, VANPOPTA A C, TSUI Y Y. Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of co-pper[J].Applied Physics, 2005, A81(4):729-735. [5] FAN W X, WANG P Q, HAN J H, et al. Accumulation effect of film damage under repetitive laser pulses[J]. Laser Technology, 2014, 38(2):210-213(in Chinese). [6] BECKER J, BERNHARDT A. ISO 11254:An international standard for the determination of the laser-induced damage threshold[J].Proceedings of the SPIE, 1994, 2114:703-713. doi: 10.1117/12.180881 [7] TANG F B, XIAO J, MA Z. Study on wide spectrum characteristics of TiO2 film with ellipsometry[J]. Laser Technology, 2015, 39(6):776-779(in Chinese). [8] ZHOU M, FAN Zh X, SHAO J D, et al. Thermal effects of optical film with the combined irradiation of different wavelength lasers[J]. Acta Photonica Sinica, 2009, 38(10):2608-2612(in Chinese). [9] LI C, LI X, ZHANG K H, et al. Femtosecond laser induced breakdown in fused silica by linearly, circularly, and elliptically polarized lasers[J].Acta Photonica Sinica, 2014, 43(s1):153-158. [10] GALLAIS L, KROL H, NATOLI J Y, et al. Laser damage resistance of silica thin films deposited by electron beam deposition, ion assisted deposition, reactive low voltage ion plating and dual ion beam sputtering[J]. Applied Optics, 2008, 515(7/8):3830-3836. [11] LIU H, PAN F, WEI Y W, et al. Influence of defects in HfO2 film on absorptance and LIDT measurements[J]. Journal of Applied Optics, 2015, 36(2):314-320(in Chinese). doi: 10.5768/JAO201536.0207004 [12] FU X Y, KONG M D, HU J P. The depositon of HR coating with high damage threshold for 1064nm laser[J].High Power Laser and Partice Beams, 1999, 11(4):413-417(in Chinese). [13] WANG F, LI Y Y, CHE Y, et al. Measurement system of flattop laser induced damage threshold to film[J]. Acta Photonica Sinica, 2016, 45(3):0314003(in Chinese). doi: 10.3788/gzxb [14] LEI Zh, ZHANG L W, ZHANG X L, et al. Analysis and simulation of temperature field of focal plane array detector irradiated by Gaussian laser[J]. Laser Technology, 2016, 40(4):516-520(in Chin-ese). [15] GUENTHER K H, HUMPHERYS T W, BALMER J, et al. 1.06microm laser damage of thin film optical coatings:a round-robin experiment involving various pulse lengths and beam diameters.[J]. Applied Optics, 1984, 23(21):3743-3752. doi: 10.1364/AO.23.003743 [16] WANG T, ZHAO Y A, HUANG J B, et al. Accumulation effect of multi shot laser induced damage to optical coatings[J]. Acta Photonica Sinica, 2006, 35(6):859-862(in Chinese). [17] DAI F, YANG L M. Effects of damaged appearance of coatings on its conditioning during laser conditioning[J]. Infrared and Laser Engineering, 2013, 42(1):190-194(in Chinese). [18] BAO H, ZENG H T, BAI Y L, et al. Blade trailing edge contour based on probability density least-square fitting[J]. Laser Technology, 2016, 40(4):555-559(in Chinese).