-
金属激光直接沉积过程中,激光作为唯一热源经由透镜组照射并加热同轴输送的粉末,受热的粉末随后进入熔池进一步被透过粉末的激光照射熔化,形成稳定的熔池。为简洁、精确地定量描述和测量激光直接沉积过程中的工艺能效,借鉴传统加工中比能为加工单位体积材料所需的能量,如削加工,常用切削能耗与材料去除率的比值来表示切削能效[15, 19],本文中提出了将激光能量输入与材料成型体积的比值作为评价金属激光直接沉积工艺能效的指标,即金属激光直接沉积工艺能效函数表示为:
$ {E_{{\rm{ef}}}} = \frac{{\sum\limits_{i = 1}^n {P{t_i}} }}{V} $
(1) 式中, Eef为金属激光直接沉积工艺能效,P为激光器实际输出的功率,ti为沉积第i层时的激光出光时间,i为沉积过程中的第i层,n为完成零件加工沉积过程所需要沉积的层数,V为沉积完成后零件的体积。
在激光直接沉积工艺过程中,沉积的总层数n以及激光功率P在进行加工前由经验以及正交试验表确定并通过程序设定,故由(1)式可知,测量工艺能效的关键在于测量沉积第i层时的激光出光时间与测量成型零件的体积,可通过在下一节中获得详细测量方法。
-
激光直接沉积增材制造是一种由激光在沉积区域产生熔池并高速移动,材料以粉末或者丝状送入高温熔池,熔化后逐层沉积的先进增材制造技术。图 1为依据该技术进行实验的现场图。如图所示,金属粉末经DPSF-2型双筒送粉器由载粉气流通过管道送至湖南大学与大族激光自主联合研发的HCX60五轴激光复合制造机床的熔覆头,沉积加工所需激光由IPG公司生产的YLS-5000光纤激光器经光纤导入熔覆头进而实现激光金属同轴直接沉积,并利用比色高温计用来实时测量激光直接沉积工艺过程中的激光出光时间,其测量的时间间隔为3ms。这是由于比色高温计通过探头测量的温度能实时反映高温熔池的持续时间与温度波动,而高温熔池的持续时间在时间节点上就是激光的出光时间。沉积过程中需对熔覆头施加保护气,以防止飞溅进入熔覆头损坏设备。试验中,所使用的载气气流与保护气都是氩气,其流量为12L/min。
复合制造机床采用西门子840Dsl数控系统,该数控系统通过控制模拟量的大小来控制激光器的出光功率以及送粉器的送粉量。然而由于数控系统所设定的激光功率和送粉量模拟量分别与激光器和送粉器的实际输出值之间不同,实验前需先对激光器实际输出功率和送粉器实际送粉量与激光功率和送粉量模拟量之间分别进行标定,标定结果如图 2所示。如图所示,各参量实际输出与模拟量之间近似成线性关系,对标定结果进行一次拟合,其拟合函数如下所示:
$ P = 1.42{P_{\rm{s}}} - 368.84 $
(2) $ f = 0.76{f_{\rm{s}}} - 10.78 $
(3) 式中,Ps为系统功率模拟量,单位为W;f为送粉器实际送粉量,单位为g/min,fs为系统模拟送粉量, 单位为g/min。
这两个拟合函数的相关系数R2值分别为0.9998和0.9931,说明这两个拟合函数的拟合程度高。因此通过这两个式子转换得到的实验数值可靠性高,具有高可信度。为了便于说明,本文中所用参量均采用模拟量。
-
实验的基板材料是尺寸为120mm×120mm×10mm的316L奥氏体不锈钢,实验前先用无水乙醇清洗基板表面并用砂纸打磨处理。输送的粉末为气雾化法制备的316L不锈钢粉末,其粉末粒度为20μm~40μm。二者的化学成分相同,如表 1所示。
Table 1. Chemical components of 316L stainless steel
chemical element C Ni Cr Mo Mn Si P S Fe mass fraction 0.00021 0.12 0.18 0.026 0.015 0.0058 0.00027 0.00011 balance -
实验过程中,采用交叉扫描的方式对零件进行加工,其扫描路径如图 3所示。考虑到沉积过程所需时间较长,为了既节约时间又使成型尺寸不至于太小,设定沉积程序使得成型零件是立方体,其单层沉积的形状是边长为20mm的正方形,沉积层数为25层。当单道沉积激光功率、送粉量以及扫描速率不同时,单道宽度也不同,导致每组成型试样的长宽尺寸也会不同;当提升量较小时,导致激光离焦量由零离焦变为负离焦,熔池被激光能量挤压使得单道沉积宽度变宽,成型件边缘容易出现塌陷或下沉,而当提升量较大时,激光离焦量由零离焦变成正离焦,熔池变宽使得单层沉积高度降低,容易出现成型件高度不足,严重时无法继续沉积。因此,成型件的尺寸会由沉积参量的改变而不同,其尺寸测量也会变得困难,为了方便测量,采用排水法测出各试样体积。
为了快速并系统地研究工艺参量对工艺能效的影响趋势,本文中采用一种利用正交表设计试验与信噪比分析相结合的田口法。考虑到激光功率P、送粉量f、扫描速率v、提升量h以及搭接率λ对沉积质量和工艺能效都有影响,并且在实验过程可通过程序控制, 因此,将这5个工艺参量作为正交试验的可控因素。根据以往实验结果,为保证沉积过程的顺利进行,选定实验参量范围为:激光功率P=(500~1100)W,送粉量f=(16~28)g/min,扫描速率v=(400~700)mm/min,提升量h=(0.3~0.6)mm,搭接率λ=30%~60%。各因素按选取实验范围设定4个水平,如表 2所示。
Table 2. Orthogonal experimental design of process parameters
level of factor P/W f/(g·min-1) v/(mm·min-1) h/mm λ/% 1 500 16 400 0.3 30 2 700 20 500 0.4 40 3 900 24 600 0.5 50 4 1100 28 700 0.6 60 -
根据正交试验设计表,选用L16(45)的正交表。实验共设计16组工艺参量,每组工艺参量沉积成一个成型试样。通过(1)式计算每组工艺参量所对应的工艺能效值,结果如表 3所示。通过第2.1节、第2.2节中提到的测量方法分别测量沉积工艺中激光输入时间以及试样成型体积并记录在正交试验表中,如表 4所示。
Table 3. Process efficiency of laser direct metal deposition
test number Eef/(J·mm-3) 1 499.5 2 108.3 3 53.2 4 40.1 5 782.9 6 128.2 7 83.1 8 64.7 9 1217.5 10 224.5 11 178.3 12 139.3 13 1163.6 14 273.1 15 121.5 16 170.1 Table 4. Orthogonal test table and experimental result
test
numberfactor measuring result laser power
P/Wfeed rate
f/(g·min-1)scan speed
v/(mm·min-1)uplift
h/mmoverlapping ratio
λ/%light time of single layer
t/sworkpiece volume
V/mm31 500 16 400 0.3 30 37.025 630 2 500 20 500 0.4 40 34.968 2744 3 500 24 600 0.5 50 33.805 5404 4 500 28 700 0.6 60 36.493 7741 5 700 16 500 0.5 60 50.006 990 6 700 20 400 0.6 50 49.400 5971 7 700 24 700 0.3 40 25.250 4707 8 700 28 600 0.4 30 25.306 6067 9 900 16 600 0.6 40 39.500 730 10 900 20 700 0.5 30 21.944 2199 11 900 24 400 0.4 60 61.944 7818 12 900 28 500 0.3 50 39.944 6451 13 1100 16 700 0.4 50 29.306 743 14 1100 20 600 0.3 60 49.250 5319 15 1100 24 500 0.6 30 30.006 7284 16 1100 28 400 0.5 40 43.444 7535 -
田口试验中常采用信噪比(signal-to-noise ratio,SNR)来衡量产品质量的稳定性,通过对结果进行分析,可以找到抗干扰能力强、调整性好、性能稳定的最佳参量组合。本实验中,信噪比则表示了熔覆过程中能效受激光功率、送粉量、扫描速率、提升量以及搭接率等干扰因素影响的稳定程度。信噪比可用下式表示:
$ {R_{{\rm{SNR}}}} = - 10{\rm{lg}}\left( {\frac{1}{m}\sum\limits_{j = 1}^m {{y_j}^2} } \right) $
(4) 式中, RSNR表示能效的信噪比值,m为总测量次数,即为试验次数,yj表示各实验方案下第j次实验测得的能效值。
在本实验中以工艺能效为目标采用望小特性,利用MINITAB进行田口法分析,得到工艺能效的信噪比响应图,图 4为五轴激光复合制造机床金属直接沉积工艺在其工艺参量下四水平的工艺能效信噪比图。图中横轴表示每个可控因素的4个水平值,纵轴表示对应的信噪比值。从信噪比响应图中可以看出, 送粉速率以及激光功率对工艺能效影响较大,搭接率对工艺能效的影响较小,并且面向工艺能效目标的望小特性的可能最佳工艺组合为P1f4v3h4λ1,即在激光能量满足沉积工艺的前提下,采用较低功率和较大的送粉量能降低金属直接沉积的工艺能耗。同时,考虑到工艺参量对工艺性能的影响,根据相关文献[20-21], 为保证沉积性能,一般选取搭接率λ=40%~50%。这与田口试验优化组合结果有所出入,主要原因是田口实验考量的目标为工艺能效,而选取搭接率λ=40%~50%的文献中主要考量目标为工艺性能。因此,在后续的研究中,为了能综合并且系统地评价工艺能效与工艺参量的关系,有必要将工艺性能纳入考量范围内。
-
表 5所示为正交试验因素各个指标极差(k1~k4)与方差分析结果, K是平均极差,F是F检验值。从表中数据可以看出, 各因素对工艺能效即比能的影响主次依次为送粉量、激光功率、搭接率、扫描速率以及提升量。这在一定程度上说明送粉量对金属激光直接沉积工艺能效影响最大。这主要是因为在沉积过程中,随着送粉量逐步增大,粉束中粉末粒子数量增加,粉末对激光的吸收量会有所增加,进而导致激光总的吸收率增高,比能值减小。而方差分析结果中,送粉量的F比值大于F临界值,这亦侧面佐证了送粉量对工艺能效的影响最大。
Table 5. Orthogonal polar difference analysis and variance analysis
content laser power
P/Wfeed rate
f/(g·min-1)scan speed
v/(mm·min-1)uplift
h/mmoverlapping ratio
λ/%k1 175.1 838.5 243.9 248.6 227.4 k2 264.6 183.6 287.9 378.7 317.7 k3 362.9 109.0 325.1 307.6 371.0 k4 432.0 103.6 377.8 299.8 318.5 K 256.9 734.9 133.9 130.1 173.6 priorities f>P>λ>v>h devsq 151657.327 1512966.772 38679.667 34353.722 42673.852 degrees of freedom 3 3 3 3 3 F 0.426 4.249 0.109 0.096 0.120 threshold of F 3.290 3.290 3.290 3.290 3.290
激光直接金属沉积工艺能效的田口试验研究
Taguchi experimental investigation on process energy efficiency of laser direct metal deposition
-
摘要: 为了研究金属激光直接沉积工艺过程中工艺参量对工艺能效的影响,采用自主研发的HCX60五轴激光复合制造机床开展工艺能效田口试验,并对其结果进行了信噪比分析、极差分析以及方差分析,得到激光功率、送粉量、扫描速率、提升量以及搭接率对工艺能效的影响主次关系,提出了工艺因素优化组合。结果表明,送粉量对工艺能效的影响最为显著,最佳参量组合为激光功率P=500W,送粉量f=28g/min,扫描速率v=600mm/min,提升量h=0.6mm和搭接率λ=30%。这为研究增材制造工艺参量对工艺能效的作用及影响规律提供了理论借鉴和实验基础。Abstract: In order to study influence of direct metal laser deposition process parameters on the process efficiency, a self-developed HCX60 five-axis laser composite manufacturing center was adopted to carry out Taguchi experiment for process efficiency. Signal-to-noise ratio analysis, range analysis and variance analysis were used to analyze the results. The influence of laser power, powder feed rate, scanning rate, lifting capacity and overlap ratio on process energy efficiency was discussed and the optimum combination of technological factors was put forward. The results show that, powder feeding rate is the most significant parameter for the process of energy efficiency. The best combination of parameters is laser power P of 500W, powder feeding rate f of 28g/min, scanning speed v of 600mm/min, lifting capacity h of 0.6mm and overlap rate λ of 30%. The research provides theoretical and experimental grounds for further studying the effect of process parameters on process energy efficiency and its influence rule.
-
Table 1. Chemical components of 316L stainless steel
chemical element C Ni Cr Mo Mn Si P S Fe mass fraction 0.00021 0.12 0.18 0.026 0.015 0.0058 0.00027 0.00011 balance Table 2. Orthogonal experimental design of process parameters
level of factor P/W f/(g·min-1) v/(mm·min-1) h/mm λ/% 1 500 16 400 0.3 30 2 700 20 500 0.4 40 3 900 24 600 0.5 50 4 1100 28 700 0.6 60 Table 3. Process efficiency of laser direct metal deposition
test number Eef/(J·mm-3) 1 499.5 2 108.3 3 53.2 4 40.1 5 782.9 6 128.2 7 83.1 8 64.7 9 1217.5 10 224.5 11 178.3 12 139.3 13 1163.6 14 273.1 15 121.5 16 170.1 Table 4. Orthogonal test table and experimental result
test
numberfactor measuring result laser power
P/Wfeed rate
f/(g·min-1)scan speed
v/(mm·min-1)uplift
h/mmoverlapping ratio
λ/%light time of single layer
t/sworkpiece volume
V/mm31 500 16 400 0.3 30 37.025 630 2 500 20 500 0.4 40 34.968 2744 3 500 24 600 0.5 50 33.805 5404 4 500 28 700 0.6 60 36.493 7741 5 700 16 500 0.5 60 50.006 990 6 700 20 400 0.6 50 49.400 5971 7 700 24 700 0.3 40 25.250 4707 8 700 28 600 0.4 30 25.306 6067 9 900 16 600 0.6 40 39.500 730 10 900 20 700 0.5 30 21.944 2199 11 900 24 400 0.4 60 61.944 7818 12 900 28 500 0.3 50 39.944 6451 13 1100 16 700 0.4 50 29.306 743 14 1100 20 600 0.3 60 49.250 5319 15 1100 24 500 0.6 30 30.006 7284 16 1100 28 400 0.5 40 43.444 7535 Table 5. Orthogonal polar difference analysis and variance analysis
content laser power
P/Wfeed rate
f/(g·min-1)scan speed
v/(mm·min-1)uplift
h/mmoverlapping ratio
λ/%k1 175.1 838.5 243.9 248.6 227.4 k2 264.6 183.6 287.9 378.7 317.7 k3 362.9 109.0 325.1 307.6 371.0 k4 432.0 103.6 377.8 299.8 318.5 K 256.9 734.9 133.9 130.1 173.6 priorities f>P>λ>v>h devsq 151657.327 1512966.772 38679.667 34353.722 42673.852 degrees of freedom 3 3 3 3 3 F 0.426 4.249 0.109 0.096 0.120 threshold of F 3.290 3.290 3.290 3.290 3.290 -
[1] HERRING H. Energy efficiency-a critical view[J]. Energy, 2006, 31(1):10-20. doi: 10.1016/j.energy.2004.04.055 [2] APOSTOLOS F, ALEXIOS P, GEORGIOS P, et al. Energy efficiency of manufacturing processes:a critical review[J]. Procedia Cirp, 2013, 7(5):628-633. [3] LONG R Sh, LIU W J, SHANG X F. Numerical simulation of temperature field on laser metal deposition shaping[J]. Laser Technology, 2007, 31(4):394-396(in Chinese). [4] MENG W D, SHI Sh H, FU G Y, et al. Experimental study about vertical surface accumulation with coaxial inside-beam power feeding[J]. Laser Technology, 2015, 39(5):594-597(in Chinese). [5] DAHMEN M, GüDüKKURT O, KAIERLE S. The ecological footprint of laser beam welding[J]. Physics Procedia, 2010, 5:19-28. [6] FYSIKOPOULOS A, PASTRAS G, ALEXOPOULOS T, et al. On a generalized approach to manufacturing energy efficiency[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(9/12):1437-1452. [7] XUE H, KUMAR V, SUTHERLAND J W. Material flows and environmental impacts of manufacturing systems via aggregated input-output models[J]. Journal of Cleaner Production, 2007, 15(13/14):1349-1358. [8] BRANHAM M, GUTOWSKI T G, JONES A, et al. A thermodynamic framework for analyzing and improving manufacturing processes[C]//International Symposium on Electronics and the Environment.New York, USA: IEEE, 2008: 1-6. [9] CHOI A C K, KAEBERNICK H, LAI W H. Manufacturing processes modelling for environmental impact assessment[J]. Journal of Materials Processing Technology, 1997, 70(1/3):231-238. [10] BHUSHAN R K. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites[J]. Journal of Cleaner Production, 2013, 39(1):242-254. [11] DRAGANESCU F, GHEORGHE M, DOICIN C V. Models of machine tool efficiency and specific consumed energy[J]. Journal of Materials Processing Technology, 2003, 141(1):9-15. [12] YAN J H, FENG C H, LI L. Sustainability assessment of machining process based on extension theory and entropy weight approach[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(5/8):1419-1431. [13] FRANCO A, ROMOLI L. Characterization of laser energy consumption in sintering of polymer based powders[J]. Journal of Materials Processing Technology, 2012, 212(4):917-926. doi: 10.1016/j.jmatprotec.2011.12.003 [14] PASTRAS G, FYSIKOPOULOS A, STAVROPOULOS P, et al. An approach to modelling evaporation pulsed laser drilling and its energy efficiency[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(9/12):1227-1241. [15] LI W, KARA S. An empirical model for predicting energy consumption of manufacturing processes:a case of turning process[J]. Proceedings of the Institution of Mechanical Engineers, 2011, B225(9):1636-1646. [16] MORI M, FUJISHIMA M, INAMASU Y, et al. A study on energy efficiency improvement for machine tools[J]. CIRP Annals-Manufacturing Technology, 2011, 60(1):145-148. doi: 10.1016/j.cirp.2011.03.099 [17] LI L, YAN J, XING Z. Energy requirements evaluation of milling machines based on thermal equilibrium and empirical modelling[J]. Journal of Cleaner Production, 2013, 52(4):113-121. [18] GUO Y, DUFLOU J R, LAUWERS B. Energy-based optimization of the material stock allowance for turning-grinding process sequence[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1):503-513. [19] HUANG Zh T, YANG J, ZhANG Ch Y, et al. Energy-oriented CNC milling process modelling and parameter optimization[J]. Chinese Journal of Mechanical Engineering, 2016, 27(18):2524-2532(in Chinese). [20] SHI B F, ZHANG A F, QI B L, et al. Influence of heat accumulation on microstructure and property of Ti-6Al-4V in laser direct forming[J]. Laser Technology, 2016, 40(1):29-32(in Chinese). [21] ZHANG D Q, LIU X D, ZHANG W B, et al. Study on effect of scanning path on quality of single laser cladding layer[J]. Hot Working Technology, 2016, 45(20):149-152(in Chinese).