-
图 3a~图 3c所示是3种不同光损耗的样品L1, L2和L3在波长1310nm, 1400nm, 1500nm, 1550nm处的通光功率变化值随溶液折射率的变化曲线。由图可知,当槽内溶液折射率相同时,随通光波长的变化通光功率的变化值有一些起伏,这是由于溶液对不同波长的光能量吸收和散射的不同引起的。此外,在折射率1.3331~1.3731范围内各个波长处样品的通光功率值的变化随液体折射率的变化情况大体一致,说明波长对通光功率的变化值与折射率关系影响不大,因此在这里选择通信波长1550nm处对样品通光功率变化值随溶液折射率变化情况进行分析。图 3d所示在1550nm处,L1, L2, L3 3种具有不同通光损耗的折射率U形槽,当加入不同折射率的待测液体后,通光功率的变化情况。由图可知,随着在U形槽中加入的待测液体的折射率的增大,通光功率的变化值增大,通过拟合可以看到, 加入的待测液体折射率在1.3331~1.3731区间内,通光功率的变化值的变化情况具有良好的线性,而且随着U形槽光损耗的增加, 拟合后得到直线的斜率也在增加,说明对于长20μm的U形槽,随着光损耗的增加,折射率传感区域对折射率变化的感应灵敏程度增加。由图 3可知,L1的折射率灵敏度为3980μW/RIU,L2,L3的折射率灵敏度分别为4340μW/RIU和5700μW/RIU。
Figure 3. a—relationship of power change and refractive index with different wavelengths at L1 b—relationship of power change and refractive index with different wavelengths at L2 c—relationship of power change and refractive index with different wavelengths at L3 d—relationship of power change and refractive index at L1, L2, L3
对于传感器的光损耗与U形槽深度和待测液体折射率的关系,可以用射线光学理论进行分析。如图 4所示,纤芯中传播的光在到达U形槽交界处时,一部分光会在交界处发生全反射后进入包层后损耗或进入空气中损耗,还有一部分光在交界面处不满足全反射条件折射进入U形槽空间中同样大部分在空气中损耗。由图可知,当U形槽深度增加时,第1种光损耗和第2种光损耗都会增加,即使一小部分折射光线可以传播到U形槽侧壁的纤芯处,由于光纤折射率与空气折射率差较大,较大部分的光也不能耦合到纤芯中。根据公式:
$ {{n}_{1}}\sin {{\theta }_{1}}={{n}_{2}}\sin {{\theta }_{2}} $
(1) 式中,n1为纤芯折射率,n2为微槽中的折射率; θ1和θ2为光线与法线夹角,如图 4所示。当U形槽中加入待测液体后,第1种光损耗受U形槽内溶液折射率的变化影响了全反射条件,使一部分光重新耦合到光纤内,但同时有一部分光满足全反射条件造成光损耗,所以这一部分光损耗变化量较小。第2种光损耗由于待测液体折射率高于空气,在U形槽壁处折射进入槽内在空气中损耗的光会再次耦合进入出纤芯,这会导致光纤损耗减小使通光功率提升,并且随着带测液体折射率的提升耦合进入纤芯的光增加。
如图 5所示, L2, L4, L5光损耗相近,但烧蚀长度有较大变化的U形槽在接入相同功率的光源后,加入不同折射率的待测液体后,通光功率的变化值。由图可知, L2, L4, L5的折射率灵敏度分别为4340μW/RIU, 1310μW/RIU和3410μW/RIU。可以明显看到,当烧蚀的U形槽的长度为20μm时,相较烧蚀长度为10μm和30μm有较好的折射率探测灵敏度。这是由于当烧蚀长度为30μm时,虽然达到了相应的损耗值,但是由于烧蚀深度与烧蚀长度为20μm相较较浅,所以第2种光损耗相对较少导致折射率灵敏度较低。当烧蚀长度为10μm时,虽然烧蚀深度较20μm时深,但是由于烧蚀长度较短,加入较低折射率的待测液体后,第2种光损耗情况损耗的光已经大部分耦合进入纤芯,再次提高加入的待测液体的折射率可影响的损耗的光相对较少。可见光损耗为10dB左右时烧蚀长度为20μm的U形槽对折射率的测量具有较好的灵敏度,同时加工难度相对较低。
Figure 5. Relationship of power change and refractive index with the different refractive indexs of L2, L4, L5
对于传感器的光损耗与U形槽深度和待测液体折射率的关系,同样可以用模式理论进行分析。当光进入多模光纤后,会在光纤中激发出几百甚至上千个模式,这些模式在光纤中传播到烧蚀区域,由于在烧蚀区域光纤的折射率发生较大变化,会使一部分模式的光不能在光纤中传播造成损耗。当在烧蚀区域加入待测液体后,可认为对烧蚀区域的折射率情况向原光纤折射率情况进行了匹配,由于光纤折射率高于待测液体折射率,因而随着待测液体折射率的提高,会有更多模式的光通过烧蚀区域,从而增加了通光功率。如图 3d所示, 在1550nm处, L1, L2, L3 3种具有不同通光损耗的折射率U形槽,由于其烧蚀深度不同,当烧蚀深度较高时,受影响的光传播模式较多,对烧蚀区域加入的待测液体的折射率的变化较为敏感。
如图 5所示, L2, L4, L5光损耗相近,但是其烧蚀长度不同。对于L4,虽然烧蚀深度较深, 影响的光传播模式较多,但其烧蚀长度较短, 加入待测液体后,光在待测液体中传播的距离较短,因而对折射率的变化变化不够敏感。对于L5, 虽然烧蚀长度较长,但其烧蚀深度较浅导致影响的光传播模式较少,同样对折射率的变化不够敏感。可见对于光损耗为10dB左右时烧蚀长度为20μm的U形槽对折射率的测量具有较好的灵敏度。
飞秒激光制备光纤U形微结构应用于折射率传感
Fabrication of optical fiber U-shaped microstructure by femtosecond laser and its application in refractive index sensing
-
摘要: 为了实现低成本、高精度的折射率测量,采用飞秒激光微加工技术,制备出基于U形微结构的多模光纤液体折射率传感器。研究了传感器的通光功率变化值与U形槽深度以及U形槽内液体折射率的关系,同时探究了在相同光损耗情况下不同烧蚀长度对灵敏度的影响,并使用射线理论和模式理论对传感机理进行了分析。结果表明,该传感器在折射率1.3331~1.3731范围内具有良好的线性响应,且可以做到5700μW/RIU的灵敏度;同时在10dB损耗情况下20μm烧蚀长度具有较好的灵敏度。该传感器具有结构简单、容易制备、灵敏度高和低成本等优点,在化学、生物、医学、环境监测等方面有广泛的应用前景。Abstract: In order to realize refractive index (RI) measurement with low cost and high precision, a multimode fiber liquid refractive index sensor based on U-shaped microstructure was fabricated by femtosecond laser micromachining. The relationship of the variation of the optical power of the sensor, the depth of the U-shaped groove and the refractive index of the liquid in the U-shaped groove were studied. The influence of the different ablation lengths on the sensitivity was also discussed. The sensing mechanism was analyzed based on the influence of the radiation theory and the model. The results show that the sensor has a good linear response in the range of 1.3331~1.3731(refractive index), and can reach 5700μW/RIU (refractive index unit) sensitivity. While in the case of 10dB loss, a good sensitivity can be obtained at 20μm ablation length. The sensor has advantages of simple structure, easy preparation, high sensitivity and low cost. It has wide application prospect in chemistry, biology, medicine and environmental monitoring.
-
Key words:
- sensor technique /
- femtosecond laser /
- fiber optic sensor /
- U-shaped microstructure /
- refractive index
-
Figure 3. a—relationship of power change and refractive index with different wavelengths at L1 b—relationship of power change and refractive index with different wavelengths at L2 c—relationship of power change and refractive index with different wavelengths at L3 d—relationship of power change and refractive index at L1, L2, L3
-
[1] GUAN C Y, TIAN X Z, LI S Q, et al. Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber[J]. Sensors and Actuators, 2013, B188: 768-771. [2] IADICICCO A, CUSANO A, CUTOLO A, et al. Thinned Fiber Bragg Gratings as high sensitivity refractive index sensor[J]. IEEE Photonics Technology Letters, 2004, 16(4): 1149-1151. doi: 10.1109/LPT.2004.824972 [3] ZHOU J T, WANG Y P, LIAO C R, et al. Intensity modulated refractive index sensor based on optical fiber Michelson interferometer[J]. Sensors and Actuators, 2015, B208: 315-319. [4] TIAN Z, YAM S S H, LOOCK H P. Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber[J]. Optics Letters, 2008, 33(10): 1105-1107. doi: 10.1364/OL.33.001105 [5] QIAN W W, CHAN C C, ZHAO C L, et al. Photonic crystal fiber refractive index sensor based on a fiber Bragg grating. demodulation[J]. Sensors and Actuators, 2012, B166/167:761-765. [6] JHA R, VILLATORO J, BADENES G, et al. Refractometry based on a photonic crystal fiber interferometer[J].Optics Letters, 2009, 34(5): 617-619. doi: 10.1364/OL.34.000617 [7] SCHAFFER C B, BRODEUR A, GARCÍA J F, et al. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy[J]. Optics Letters, 2001, 26(2): 93-95. [8] XING S L, LIU L, ZOU G Sh, et al. Effects off em to second laser parameters on hole drilling of silica glass [J]. Chinese Joural of Lasers, 2015, 42(4): 0403001(in Chinese). doi: 10.3788/CJL [9] NOLTE S, MOMMA C, JACOBS H, et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America, 1997, B14(10): 2716-2722. [10] BO L, ZHAO X L, LIU Y, et al. Optical fiber micro-hole sensor fabricated with fem to second laser[J]. Laser Technology, 2013, 37(1): 101-104(in Chinese). [11] CHEN C H, TSAO T C, LI W Y, et al. Novel U-shape gold nanoparticles-modified optical fiber for localized plasmon resonance chemical sensing [J]. Microsystem Technologies, 2010, 16(7): 1207-1214. doi: 10.1007/s00542-009-0945-8 [12] GATTASS R R, MAZUR E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2: 219-225. doi: 10.1038/nphoton.2008.47 [13] OSELLAME R, MASELLI V, VAZQUEZ R M, et al. Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation[J]. Applied Physics Letters, 2007, 90(23): 231118. doi: 10.1063/1.2747194 [14] RAO Y J, DENG M, ZHU T. Visibility-enhanced in-line Fabry-Perot interferometers by the use of femtosecond lasers[J]. Chinese Joural of Lasers, 2009, 36(6): 1459-1462(in Chinese). doi: 10.3788/JCL [15] WEI T, HAN Y K, LI Y J, et al. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement[J]. Optics Express, 2008, 16(8): 5764-5769. doi: 10.1364/OE.16.005764 [16] WEI T, HAN Y, LI Y, et al. Microchannels in conventional single-mode fibers[J]. Optics Express, 2008, 31(17): 2559-2561. [17] SUN X Y, DONG X R, HU Y W, et al. A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching[J]. Sensors and Actuators, 2015, A230: 111-116. [18] LIAO C R, HU T Y, WANG D N. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing[J]. Optics Express, 2012, 20(20): 22813-22818. doi: 10.1364/OE.20.022813 [19] QUE R Y, LIU Y, SUN H H, et al. Refractive index sensor based on F-P interferometer cavity in optical fiber with double-openings[J]. Laser Technology, 2014, 38(6): 780-784(in Chinese).