-
综合考虑计算精度和计算时间,模型网格划分时在激光辐照区及其附近区域进行加密,在较远区域采用较粗网格。计算几何模型尺寸为1mm×1mm×0.25mm,在多次计算中最外层的热影响区并没有超出这个尺寸,所以这样的缩小尺寸是可行的。计算几何模型见图 2。
-
整个模拟过程满足质量、动量、能量守恒定律,其基本控制方程如下。
连续方程:
$ \frac{\partial \rho }{\partial t}+\frac{\partial \left( \rho \mu \right)}{\partial x}+\frac{\partial \left( \rho \nu \right)}{\partial y}+\frac{\partial \left( \rho \omega \right)}{\partial z}=0 $
(1) 式中,ρ是密度; t是时间; μ, ν和ω是速度矢量μ在x, y, z方向的分量。
动量方程:
$ \left\{ \begin{matrix} \frac{\partial \left( \rho \mu \right)}{\partial t}+\text{div}\left( \rho \mu \ \mathit{\boldsymbol{\mu }} \right)=-\frac{\partial p}{\partial x}+\frac{\partial {{\tau }_{xx}}}{\partial x}+\frac{\partial {{\tau }_{yx}}}{\partial y}+\frac{\partial {{\tau }_{zx}}}{\partial z}+{{F}_{x}}~ \\ \frac{\partial \left( \rho \nu \right)}{\partial t}+\text{div}\left( \rho \nu \ \mathit{\boldsymbol{\mu }} \right)=-\frac{\partial p}{\partial y}+\frac{\partial {{\tau }_{xy}}}{\partial x}+\frac{\partial {{\tau }_{yy}}}{\partial y}+\frac{\partial {{\tau }_{zy}}}{\partial z}+{{F}_{y}} \\ \frac{\partial \left( \rho \omega \right)}{\partial t}+\text{div}\left( \rho \omega \ \mathit{\boldsymbol{\mu }} \right)=-\frac{\partial p}{\partial z}+\frac{\partial {{\tau }_{xz}}}{\partial x}+\frac{\partial {{\tau }_{yz}}}{\partial y}+\frac{\partial {{\tau }_{zz}}}{\partial z}+{{F}_{z}}~ \\ \end{matrix} \right. $
(2) 式中,div表求散度计算方式; p是微元体上的压力;τxx, τxy和τxz等是因分子粘性作用而产生的作用在微元体表面上的粘性应力τ的分量;Fx, Fy和Fz是微元体上的体积力。本文中,z轴竖直向上,所以Fx=0,Fy=0,Fz=-ρg, g表示重力加速度。
能量守恒方程:
$ \frac{\partial \left( \rho T \right)}{\partial t}+\text{div}\left( \rho \mathit{\boldsymbol{\mu }}\text{ }T \right)=\text{div}\left( \frac{\kappa }{{{c}_{p}}}\text{grad}T+\Delta H \right)~ $
(3) 式中,grad表阶度计算方式, cp是比热容,T为温度,κ为传热系数,ΔH为熔化相变潜热。
-
为准确描述激光毛化过程,考虑试样表面通过对流和辐射换热向周围环境散失能量。总热流密度为:
$ q={{q}_{\text{c}}}+{{q}_{\text{r}}}=h\left( {{T}_{\text{e}}}-{{T}_{0}} \right)+{{a}_{\text{r}}}({{T}_{\text{e}}}-{{T}_{0}}) $
(4) $ {{q}_{\text{c}}}=h({{T}_{\text{e}}}-{{T}_{0}})~ $
(5) $ {{q}_{\text{r}}}={{a}_{\text{r}}}({{T}_{\text{e}}}-{{T}_{0}})~ $
(6) 式中,qc, qr分别为对流换热热流密度、辐射换热热流密度,h为表面对流换热系数;ar为表面辐射换热系数;Te和T0分别为试样表面温度和环境温度。
试样初始温度等于环境温度T0:
$ T\left( x, y, z, 0 \right)={{T}_{0}}=20℃ $
(7) -
金属对激光吸收发生在表层很薄的范围内,因此模拟过程中将激光热源当成表面热源。试验中所用激光器的激光光强空间为高斯分布,时间为矩形分布,因此模拟参量设置相同。激光功率密度为:
$ I\left( x, y \right)=P\text{exp}\left( -2\frac{{{x}^{2}}+{{y}^{2}}}{{{w}^{2}}} \right) $
(8) 式中,P为激光功率,w为光斑直径(50μm)。
-
45#钢的热物性参量如密度、比热容、导热系数等随温度变化而变化。因此根据表 1中给出的已知温度处的参量,通过插值法和外推法确定未知温度处的值。材料密度7840kg/m3,熔点1495℃。融化潜热取为260000J/kg。
Table 1. Specific heat and heat conductivity of 45# steel
T/℃ 20 100 200 300 400 500 600 700 755 800 900 1000 cp/(J·kg-1·K-1) 472 480 498 524 560 615 700 854 1064 806 637 602 λ/(W·m-1·K-1) 47 43.53 40.44 38.13 36.02 34.16 31.98 28.66 25.14 26.49 25.92 24.02 -
金属表面吸收激光能量并向内部传递,温度逐渐达到熔化点以上发生熔化,此时存在液相区、糊状区和固相区。本文中采用焓-多孔介质方法处理固液相变移动边界。考虑金属融化后的自然对流和Marangoni对流。
45#钢光纤激光毛化数值模拟及实验研究
Numerical simulation and experimental study about fiber laser texture on 45# steel
-
摘要: 为了在模具上加工出特定的毛化形貌和尺寸,采用计算流体力学软件Fluent探究形貌成型机理,建立了激光毛化过程3维瞬态模型。考虑热传导、热对流、材料热物性参量等影响因素,采用焓法处理固液相变移动边界,通过用户自定义函数加载激光热源,计算得出熔池温度场与流场。基于数值模拟,采用单因素轮换法进行了毛化工艺试验,研究了激光功率密度、脉宽两因素对毛化形貌、几何参量的影响。结果表明,激光功率密度在2.04×104W/mm2~3.57×104W/mm2,脉宽在100μs~1000μs之间;以氮气作为辅助气体,可获得球冠状、凹顶球冠状、M状3种形貌。该结果对模具毛化种类具有指导意义。Abstract: In order to fabricate specific morphology and size on a mold by means of the laser texture, and explore the mechanism of the formation of topography, a three-dimensional transient model of the laser texturing process was established based on the Fluent software. The temperature field and flow field of molten pool were calculated, and the experimental parameters were determined:laser power density 2.04×104W/mm2~3.57×104W/mm2, pulse width 100μs~1000μs. The thermal conductivity, thermal convection, thermophysical properties of materials and other factors were considered. The enthalpy method was used to deal with the boundary of solid-liquid phase transition, the laser heat source was loaded through user defined function. Based on numerical simulation, the influence of laser power density and pulse width on the morphologies and geometrical parameters of laser texturing were studied by varying a single factor with nitrogen gas as the auxiliary gas. Spherical crown, concave crown and M shape were obtained. The results have guiding significance for mold texturing.
-
Key words:
- laser technique /
- laser texturing /
- computational fluid dynamics /
- temperature field /
- flow field
-
Table 1. Specific heat and heat conductivity of 45# steel
T/℃ 20 100 200 300 400 500 600 700 755 800 900 1000 cp/(J·kg-1·K-1) 472 480 498 524 560 615 700 854 1064 806 637 602 λ/(W·m-1·K-1) 47 43.53 40.44 38.13 36.02 34.16 31.98 28.66 25.14 26.49 25.92 24.02 -
[1] WAN T, LI J L. Effect of laser-texturing morphology on tribological performance of face seal pairs[J]. Laser Technology, 2015, 39(4):506-509(in Chinese). [2] ZHANG R H, HAN Sh, LIANG H J. Study on fiber laser surface texturing technology for the roller[J].Applied Laser, 2011, 31(6):451-455(in Chinese). doi: 10.3788/AL [3] SHEN H, CHEN G N, LI G C. The plastic instability behavior of laser textured steel sheet[J]. Materials Science and Engineering, 1996, A219(1/2):156-161. [4] HE Y F, DU D, LIU Y.Laser texturing of rolled surfaces[J]. Journal of Qinghua (Science and Technology Edition), 2003, 8(2):236-240. [5] WAN D P, LIU H B, WANG Y M.CO2 laser beam modulating for surface texturing machining[J].Optics & Laser Technology, 2008, 40(12):308-314. [6] ZHANG J Y, XU Sh M, SUN D Y. Performance research of thermal shock resistance of laser remelting thermal barrier coating on roll surface[J]. Laser Technology, 2015, 39(4):552-556(in Chinese). [7] DUAN J. Present and future development of laser microprocessing on disk substrate-laser texture[J]. Laser Technology, 2006, 30(5):490-493(in Chinese). [8] FU Y H, GU Y L, KANG Zh Y. Experimental research of laser texturing of cemented carbide[J]. Laser Technology, 2016, 40(4):512-515 (in Chinese). [9] LIN Z G. Laser texturing and design of tribology[J]. Journal of Machine Design, 2000, 17(4):24-27(in Chinese). [10] DU D, HE Y F, SUI B, et al. Laser texturing of rollers by pulsed Nd:YAG laser[J]. Journal of Materials Processing Technology, 2005, 161(3):456-461. doi: 10.1016/j.jmatprotec.2004.07.083 [11] LIU Y, CHEN D R, HE Y F. Effect of surface roughness of steel on morphology of laser-textured micro-convex[J]. Tribology, 2002, 22(6):477-480(in Chinese). [12] VILHENA L M, SEDLACEK M, PODGORNIK B, et al. Surface texturing by pulsed Nd:YAG laser[J]. Tribology International, 2009, 42(10):1496-1504. doi: 10.1016/j.triboint.2009.06.003 [13] MI T, LI C D, NI J, et al. Laser texturing of spherical cap slight protuberance profile on mould and die surface[J]. Laser Technology, 2009, 33(5):500-502(in Chinese). [14] CHILAMAKURI S, BHUSHAN B. Effect of peak radius on design of W-type donut shaped laser textured surfaces[J]. Wear, 1999, 230(2):118-123. doi: 10.1016/S0043-1648(99)00088-5 [15] XU B Q, WANG H, XU G D, et al. Numerical modeling of laser-induced molten pool for laser interaction with metal material[J]. Journal of Jiangsu University(Natural Science Edition), 2010, 31(3):358-362(in Chinese). [16] VORA H D, SANTHANAKRISHNAN S, HARIMKAR S P, et al. Evolution of surface topography in one-dimensional laser machining of structural alumina[J]. Journal of the European Ceramic Society, 2012, 32(16):4205-4218. doi: 10.1016/j.jeurceramsoc.2012.06.015 [17] VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8):1709-1719. doi: 10.1016/0017-9310(87)90317-6 [18] FU Y H, LIU Q X, YE Y X, et al. Research on laser surface micro texturing processing of single pulse intervals[J]. Chinese Journal of Lasers, 2015, 42(12):1203005(in Chinese). doi: 10.3788/CJL