高级检索

45#钢光纤激光毛化数值模拟及实验研究

符永宏, 李进, 符昊, 张航成, 潘彩云

符永宏, 李进, 符昊, 张航成, 潘彩云. 45#钢光纤激光毛化数值模拟及实验研究[J]. 激光技术, 2017, 41(6): 909-915. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.028
引用本文: 符永宏, 李进, 符昊, 张航成, 潘彩云. 45#钢光纤激光毛化数值模拟及实验研究[J]. 激光技术, 2017, 41(6): 909-915. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.028
FU Yonghong, LI Jin, FU Hao, ZHANG Hangcheng, PAN Caiyun. Numerical simulation and experimental study about fiber laser texture on 45# steel[J]. LASER TECHNOLOGY, 2017, 41(6): 909-915. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.028
Citation: FU Yonghong, LI Jin, FU Hao, ZHANG Hangcheng, PAN Caiyun. Numerical simulation and experimental study about fiber laser texture on 45# steel[J]. LASER TECHNOLOGY, 2017, 41(6): 909-915. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.028

45#钢光纤激光毛化数值模拟及实验研究

基金项目: 

江苏省工业支撑基金资助项目 BE2014115

国家自然科学基金资助项目 51305168

国家自然科学基金资助项目 51375211

详细信息
    作者简介:

    符永宏(1965-), 男, 教授, 博士生导师, 主要从事润滑及激光应用技术的研究。E-mail:fyh@ujs.edu.cn

  • 中图分类号: TN249

Numerical simulation and experimental study about fiber laser texture on 45# steel

  • 摘要: 为了在模具上加工出特定的毛化形貌和尺寸,采用计算流体力学软件Fluent探究形貌成型机理,建立了激光毛化过程3维瞬态模型。考虑热传导、热对流、材料热物性参量等影响因素,采用焓法处理固液相变移动边界,通过用户自定义函数加载激光热源,计算得出熔池温度场与流场。基于数值模拟,采用单因素轮换法进行了毛化工艺试验,研究了激光功率密度、脉宽两因素对毛化形貌、几何参量的影响。结果表明,激光功率密度在2.04×104W/mm2~3.57×104W/mm2,脉宽在100μs~1000μs之间;以氮气作为辅助气体,可获得球冠状、凹顶球冠状、M状3种形貌。该结果对模具毛化种类具有指导意义。
    Abstract: In order to fabricate specific morphology and size on a mold by means of the laser texture, and explore the mechanism of the formation of topography, a three-dimensional transient model of the laser texturing process was established based on the Fluent software. The temperature field and flow field of molten pool were calculated, and the experimental parameters were determined:laser power density 2.04×104W/mm2~3.57×104W/mm2, pulse width 100μs~1000μs. The thermal conductivity, thermal convection, thermophysical properties of materials and other factors were considered. The enthalpy method was used to deal with the boundary of solid-liquid phase transition, the laser heat source was loaded through user defined function. Based on numerical simulation, the influence of laser power density and pulse width on the morphologies and geometrical parameters of laser texturing were studied by varying a single factor with nitrogen gas as the auxiliary gas. Spherical crown, concave crown and M shape were obtained. The results have guiding significance for mold texturing.
  • Figure  1.   Morphology characterization

    a—spherical crown b—concave crown c—M shape d—crater

    Figure  2.   Geometric model

    Figure  3.   Temperature field and flow field of laser power density 2.55×104W/mm2 and pulse width 500μs

    a—temperature field b—flow field

    Figure  4.   Relationship between the meximum speed and pulse width with various laser power dersities

    Figure  5.   Relationship of diameter, depth and pulse width with the temperature above 1495℃

    Figure  6.   Picture and 3-D shape of laser texturing with different pulse widths under laser power density of 2.55×104W/mm2

    a—300μs b—500μs c—1000μs

    Figure  7.   Morphology without auxiliary gas

    Figure  8.   Schematic diagram of concave crown

    Figure  9.   Picture and 3-D shape of laser texturing with different pulse widths under laser power density of 2.55×104W/mm2 and nitrogen pressure 0.2MPa

    a—500μs b—700μs c—1000μs

    Figure  10.   Schematic diagram of gas jet

    Figure  11.   Morphology within auxiliary gas

    Table  1   Specific heat and heat conductivity of 45# steel

    T/℃ 20 100 200 300 400 500 600 700 755 800 900 1000
    cp/(J·kg-1·K-1) 472 480 498 524 560 615 700 854 1064 806 637 602
    λ/(W·m-1·K-1) 47 43.53 40.44 38.13 36.02 34.16 31.98 28.66 25.14 26.49 25.92 24.02
    下载: 导出CSV
  • [1]

    WAN T, LI J L. Effect of laser-texturing morphology on tribological performance of face seal pairs[J]. Laser Technology, 2015, 39(4):506-509(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201504017

    [2]

    ZHANG R H, HAN Sh, LIANG H J. Study on fiber laser surface texturing technology for the roller[J].Applied Laser, 2011, 31(6):451-455(in Chinese). DOI: 10.3788/AL

    [3]

    SHEN H, CHEN G N, LI G C. The plastic instability behavior of laser textured steel sheet[J]. Materials Science and Engineering, 1996, A219(1/2):156-161. http://www.sciencedirect.com/science/article/pii/S0921509396104287

    [4]

    HE Y F, DU D, LIU Y.Laser texturing of rolled surfaces[J]. Journal of Qinghua (Science and Technology Edition), 2003, 8(2):236-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb-e200302021

    [5]

    WAN D P, LIU H B, WANG Y M.CO2 laser beam modulating for surface texturing machining[J].Optics & Laser Technology, 2008, 40(12):308-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=92f045024a0075a60e1e702926adfb96

    [6]

    ZHANG J Y, XU Sh M, SUN D Y. Performance research of thermal shock resistance of laser remelting thermal barrier coating on roll surface[J]. Laser Technology, 2015, 39(4):552-556(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201504028

    [7]

    DUAN J. Present and future development of laser microprocessing on disk substrate-laser texture[J]. Laser Technology, 2006, 30(5):490-493(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS200605012.htm

    [8]

    FU Y H, GU Y L, KANG Zh Y. Experimental research of laser texturing of cemented carbide[J]. Laser Technology, 2016, 40(4):512-515 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gjjs201806018

    [9]

    LIN Z G. Laser texturing and design of tribology[J]. Journal of Machine Design, 2000, 17(4):24-27(in Chinese).

    [10]

    DU D, HE Y F, SUI B, et al. Laser texturing of rollers by pulsed Nd:YAG laser[J]. Journal of Materials Processing Technology, 2005, 161(3):456-461. DOI: 10.1016/j.jmatprotec.2004.07.083

    [11]

    LIU Y, CHEN D R, HE Y F. Effect of surface roughness of steel on morphology of laser-textured micro-convex[J]. Tribology, 2002, 22(6):477-480(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mcxxb200206015

    [12]

    VILHENA L M, SEDLACEK M, PODGORNIK B, et al. Surface texturing by pulsed Nd:YAG laser[J]. Tribology International, 2009, 42(10):1496-1504. DOI: 10.1016/j.triboint.2009.06.003

    [13]

    MI T, LI C D, NI J, et al. Laser texturing of spherical cap slight protuberance profile on mould and die surface[J]. Laser Technology, 2009, 33(5):500-502(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200905026

    [14]

    CHILAMAKURI S, BHUSHAN B. Effect of peak radius on design of W-type donut shaped laser textured surfaces[J]. Wear, 1999, 230(2):118-123. DOI: 10.1016/S0043-1648(99)00088-5

    [15]

    XU B Q, WANG H, XU G D, et al. Numerical modeling of laser-induced molten pool for laser interaction with metal material[J]. Journal of Jiangsu University(Natural Science Edition), 2010, 31(3):358-362(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jslgdxxb201003024

    [16]

    VORA H D, SANTHANAKRISHNAN S, HARIMKAR S P, et al. Evolution of surface topography in one-dimensional laser machining of structural alumina[J]. Journal of the European Ceramic Society, 2012, 32(16):4205-4218. DOI: 10.1016/j.jeurceramsoc.2012.06.015

    [17]

    VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8):1709-1719. DOI: 10.1016/0017-9310(87)90317-6

    [18]

    FU Y H, LIU Q X, YE Y X, et al. Research on laser surface micro texturing processing of single pulse intervals[J]. Chinese Journal of Lasers, 2015, 42(12):1203005(in Chinese). DOI: 10.3788/CJL

图(11)  /  表(1)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-22
  • 修回日期:  2017-02-28
  • 发布日期:  2017-11-24

目录

    /

    返回文章
    返回