Loading [MathJax]/jax/output/SVG/jax.js
高级检索

一种基于混沌映射的快速图像加密算法优化

乔建平, 邓联文, 贺君, 廖聪维

乔建平, 邓联文, 贺君, 廖聪维. 一种基于混沌映射的快速图像加密算法优化[J]. 激光技术, 2017, 41(6): 897-903. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.026
引用本文: 乔建平, 邓联文, 贺君, 廖聪维. 一种基于混沌映射的快速图像加密算法优化[J]. 激光技术, 2017, 41(6): 897-903. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.026
QIAO Jianping, DENG Lianwen, HE Jun, LIAO Congwei. Optimization of fast image encryption algorithm based on chaotic mapping[J]. LASER TECHNOLOGY, 2017, 41(6): 897-903. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.026
Citation: QIAO Jianping, DENG Lianwen, HE Jun, LIAO Congwei. Optimization of fast image encryption algorithm based on chaotic mapping[J]. LASER TECHNOLOGY, 2017, 41(6): 897-903. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.026

一种基于混沌映射的快速图像加密算法优化

基金项目: 

湖南省科技计划资助项目 2015JC3041

详细信息
    作者简介:

    乔建平(1992-), 男, 硕士研究生, 主要研究方向为图像加密算法的研究

    通讯作者:

    邓联文, E-mail:dlw626@163.com

  • 中图分类号: TP309.7

Optimization of fast image encryption algorithm based on chaotic mapping

  • 摘要: 为了解决现有图像加密算法存在随图像尺寸变大导致加密时间迅速增加的问题,采用基于logistic和Arnold映射的改进加密算法实现了快速图像加密算法的优化。该算法基于两种混沌映射对原文图像进行像素置乱和灰度值替代,像素置乱是按图像大小选择以H个相邻像素为单位进行,通过适当调整H的取值实现加密时间优化;灰度值替代是利用Arnold映射产生混沌序列对置乱图像进行操作而得到密文图像。结果表明,对于256×256的Lena标准图像,加密时间降低到0.0817s。该算法具有密钥空间大和加密速度快等优点,能有效抵抗穷举、统计和差分等方式的攻击。
    Abstract: In order to solve the rapid increase of the encryption time because of the increasing image size in the existing image encryption algorithm, the optimized encryption algorithm based on logistic and Arnold mapping was used to achieve the optimization of the fast image encryption algorithm. The algorithm was based on two kinds of chaotic maps to the original image, pixel scrambling and gray value substitution. Pixel scrambling was to select the H adjacent pixels according to the image size, appropriately adjust the H value and realize the encryption time optimization. Gray value substitution is to generate chaotic sequences by Arnold mapping, operate the scrambling image and get the cipher image. The results show that, for 256×256 Lena standard images, the encryption time is reduced to 0.0817s. The algorithm has advantages of large key space and fast encryption speed, and can effectively resist the attack of exhaustive, statistical, and differential means.
  • Figure  1.   Flowchart of the proposed algorithm

    Figure  2.   Schematic diagram of conversion segmentation process

    Figure  3.   The shifting process

    Figure  4.   Encryption and decryption results

    a—original image b—cipher image c—decryption image d—the decryption image by the wrong key with x0+10-12

    Figure  5.   Histogram analysis

    a—the original Lena image b—the encrypted image

    Figure  6.   a—NPCR b—UACI

    Figure  7.   Correlation between adjacent pixels of the original and encrypted image

    a—horizontal of original image b—horizontal of encrypted image c—vertical of original image d—vertical of encrypted image e—diagonal direction of original image f—diagonal direction of encrypted image

    Figure  8.   Test of image cropping attacks

    a—encrypted Lena image by 0.39% data cut b—encrypted Lena image by 1.56% data cut c—decrypted Lena image from Fig. 8a d—decrypted Lena image from Fig. 8b

    Figure  9.   Encryption time of two kinds of image

    a—256×256 b—512×512

    Table  1   Information entropy of different images

    Lena.tiff Baboon.tiff Peppers.tiff
    original image 7.4451 7.3583 7.5937
    cipher image 7.9973 7.9972 7.9973
    下载: 导出CSV

    Table  2   Average value of NPCR and UACI in different encrypted images

    Lena.tiff Baboon.tiff Peppers.tiff Airplane.tiff
    ¯NNPCR 0.9962 0.9961 0.9960 0.9961
    ¯UUACI 0.3362 0.3349 0.3357 0.3351
    下载: 导出CSV

    Table  3   Comparison of the correlation coefficients between the algorithm with the adjacent pixels and the other algorithms

    direction original image proposed algorithm reference[17] reference[18]
    horizontal 0.9456 0.0054 0.0096 0.0192
    vertical 0.9717 -0.0028 0.0172 -0.0108
    diagonal 0.9318 -4.4027×10-4 -0.0128 0.0056
    下载: 导出CSV

    Table  4   Comparison of the encryption time of different algorithms

    image size time/s
    proposed reference[17] reference[19]
    128×128 0.0423 0.2593 0.1835
    128×256 0.0619 0.3271 0.2587
    256×256 0.0817 0.6825 0.5256
    512×512 0.1380 0.8527 0.7813
    下载: 导出CSV

    Table  5   Performance parameters for different l values

    l information entropy NPCR UACI vertical horizontal diagonal encryption speeds/s
    2 7.9975 0.9962 0.3345 -0.0027 0.0050 8.9480×10-4 0.2979
    3 7.9975 0.9960 0.3344 0.0021 0.0013 0.0045 0.1964
    4 7.9973 0.9965 0.3350 -0.9782×10-4 0.0025 0.0026 0.1318
    5 7.9973 0.9961 0.3342 -0.0048 -0.0023 -0.0027 0.1127
    6 7.9968 0.9961 0.3351 0.0052 -9.5974×10-4 0.0042 0.0828
    7 7.9973 0.9962 0.3362 -0.0028 0.0054 -4.4027×10-4 0.0817
    8 7.9975 0.9962 0.3346 -0.0020 0.0037 1.3699×10-4 0.0832
    9 7.9970 09961 0.3345 1.9570×10-4 0.0088 0.0048 0.0843
    10 7.9964 0.9961 0.3342 0.0013 0.0028 -0.0040 0.0896
    11 7.9970 0.9962 0.3353 5.3722×10-4 -0.0079 0.0046 0.1097
    12 7.9972 0.9962 0.3355 -0.0044 -0.0010 8.4257×10-4 0.1295
    13 7.9972 0.9963 0.3353 -0.0025 6.8750×10-4 -9.7786×10-4 0.1591
    下载: 导出CSV
  • [1]

    XU G X, XU Sh Q, GUO X J, et al. Image compression-encryption algorithm combined DCT transform with DNA operation[J]. Laser Technology, 2015, 39(6):806-810 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201506016

    [2]

    ZHU C X, SUN K H. Encryption algorithm for a class of hyper chaotic image encryption algorithm and its improvement[J]. Acta Physica Sinica, 2012, 61(12):120503(in Chinese).

    [3]

    WANG X Y, LIU L T, ZHANG Y Q. A novel chaotic block image encryption algorithm based on dynamic random growth technique[J]. Optics & Lasers in Engineering, 2015, 66(66):10-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e1db2d845601c172f5016209669d772

    [4]

    ZHANG W, YU H, ZHAO Z L, et al. Image encryption based on three-dimensional bit matrix permutation[J]. Signal Processing, 2016, 118(3): 36-50. http://www.sciencedirect.com/science/article/pii/S0165168415002078

    [5]

    ZHOU Y C, BAO L, CHEN P C L. A new 1-D chaotic system for image encryption [J].Signal Processing, 2014, 97(7): 172-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=950941f486c31664f98529f5c8abf9c3

    [6]

    REN X K, MA Ch. Improvement and implementation of 3D color image encryption[J].Microellectronics & Computer, 2015, 32(1): 96-99(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wdzxyjsj201501021

    [7]

    WANG L Y, SONG H J, LIU P. A novel hybrid color image encryption algorithm using two complex chaotic systems[J]. Optics and Lasers in Engineering, 2016, 77(15): 118-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b3c5a841680aa50669a2e503d29b1cd

    [8]

    LI F Y, XU J F. Image encryption algorithm based on Hash function and multi chaotic system[J].Computer Engineering and Design, 2010, 31(1): 141-144(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-SJSJ201001039.htm

    [9]

    ZHENG H Y, LI W J, XIAO D. Novel image blocking encryption algorithm based on spatiotemporal chaos system[J].Journal of Computer Application, 2011, 31(11): 3053-3055(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyy201111047

    [10]

    WANG Ch L, WU X J. Fractional order chaotic color image encryption algorithm based on block scrambling and diffusion[J].Journal of Henan University(Natural Science Edition), 2014, 44(6): 715-724(in Chinese).

    [11]

    LIU P, YAN Ch, HUANG X G. Improved generation method of chaotic spread spectrum sequence based on Logistic map[J]. Journal of Communication, 2007, 28(2):134-140(in Chinese).

    [12]

    GU G S, LING J. A fast image encryption method by using chaotic 3-D cat maps[J]. Optik—International Journal for Light and Electron Optics, 2014, 124(17):4700-4705. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2b112bf121c764bb9cb43a66a3fcfa17

    [13]

    WANG X Y, LIU L T, ZHANG Y Q. A novel chaotic block image encryption algorithm based on dynamic random growth technique[J]. Optics & Lasers in Engineering, 2015, 66(3):10-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3e1db2d845601c172f5016209669d772

    [14]

    ZHAO J F, WANG S Y, CHANG Y X, et al. A novel image encryption scheme based on an improper fractional-order chaotic system[J]. Nonlinear Dynamics, 2015, 80(4):1721-1729. DOI: 10.1007/s11071-015-1911-x

    [15]

    WU Y. NPCR and UACI randomness tests for image encryption [J]. Cyber Journals: Journal of Selected Areas in Telecommunications, 2011, 4(1):1-8.

    [16]

    PATIDAR V, PAREEK N K, SUD K K. A new substitution-diffusion based image cipher using chaotic standard and logistic maps[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14 (7): 3056-3075. DOI: 10.1016/j.cnsns.2008.11.005

    [17]

    WANG X Y, WANG Q. A novel image encryption algorithm based on dynamic S-boxes constructed by chaos[J].Nonlinear Dynamics, 2014, 75(3):567-576. DOI: 10.1007/s11071-013-1086-2

    [18]

    LI L, WANG W N, LI J J. Security improvement for image encryption algorithm based on hyper-chaotic system[J]. Application Research of Computer, 2011, 28(11): 4335-4337(in Chinese).

    [19]

    YE R S. A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism [J]. Optics Communications, 2011, 284(22): 5290-5298. DOI: 10.1016/j.optcom.2011.07.070

图(9)  /  表(5)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-11
  • 修回日期:  2017-02-16
  • 发布日期:  2017-11-24

目录

    /

    返回文章
    返回