高级检索

室内高速激光三角测距技术的设计与实现

Design and implementation of high speed indoor laser triangulation measurement

  • 摘要: 为了实现室内大范围环境激光测距,采用三角测距原理设计了一套高速激光测距系统。该系统采用高分辨率线性CCD传感器采集环境信息并输出二值化信号,由32位单片机对二值化信号进行处理,利用分段拟合法得到的距离解算算法对二值化信号进行解算,从而得到激光光斑与测距模块镜头中心的距离;最后进行了实验验证。结果表明,测距仪具有714Hz的测量频率,最大测量距离为6311mm,最小测量距离为48mm,平均误差为2.8mm,最大测量误差为11mm。该测距系统可满足室内大范围环境测量的要求。

     

    Abstract: In order to realize wide range indoor environment laser ranging, a high speed laser ranging system was designed by the principle of trigonometric ranging. Environmental informations were collected with a high resolution linear CCD sensor, and the binary signal was output. The binary signal was processed by a 32-bit single chip microcomputer. The distance between laser spot and lens center of the ranging module was obtained according to the distance obtained by the piecewise fitting method. After the experimental verification, the results show that the rangefinder has the measurement frequency of 714Hz. The maximum measurement distance is 6311mm and the minimum measurement distance is 48mm. The average error is 2.8mm and the maximum measurement error is 11mm. The distance measurement system can meet the requirements of large-scale indoor environment measurement.

     

/

返回文章
返回