-
在图 3中,假设经振动体表面漫反射后,激光散斑的频移为Δνd,偏振方向相同的参考光和测量光垂直照射在光电检测器件的光敏面上,其光电场Er(t)和Em(t)分别为[14-15]:
$ {{E}_{\text{r}}}(t)={{E}_{\text{r}, 0}}\text{cos}(2\text{ }\!\!\pi\!\!\text{ }\nu t+{{\varphi }_{\text{r}}}) $
(1) $ {{E}_{\text{m}}}(t)={{E}_{\text{m}, 0}}\text{cos}[2\text{ }\!\!\pi\!\!\text{ }(\nu +\Delta {{\nu }_{\text{d}}})t+{{\varphi }_{\text{m}}}]~ $
(2) 式中,φr和φm分别表示参考光和测量光的散斑移动相位,可得光电检测器的输出电流ip(t)为:
$ {{i}_{\text{p}}}\left( t \right)=\alpha {{\left[ {{E}_{\text{m}}}\left( t \right)+{{E}_{\text{r}}}\left( t \right) \right]}^{2}}~ $
(3) 代入(1)式和(2)式得出[4]:
$ \begin{align} &{{i}_{\text{p}}}\left( t \right)=\alpha \{{{E}_{\text{r}, 0}}^{2}\text{co}{{\text{s}}^{2}}(2\text{ }\!\!\pi\!\!\text{ }\nu t+{{\varphi }_{r}})+ \\ &~{{E}_{\text{m}, 0}}^{2}\text{co}{{\text{s}}^{2}}[2\text{ }\!\!\pi\!\!\text{ }(\nu +\Delta {{\nu }_{\text{d}}})t+{{\varphi }_{\text{m}}}]+~ \\ &{{E}_{\text{r, }0}}{{E}_{\text{m}, 0}}\text{cos}[2\text{ }\!\!\pi\!\!\text{ }(2\nu +\Delta {{\nu }_{\text{d}}})t+{{\varphi }_{\text{r}}}+{{\varphi }_{\text{m}}}]+~ \\ &{{E}_{\text{r}, 0}}{{E}_{\text{m}, 0}}\text{cos}[2\text{ }\!\!\pi\!\!\text{ }\Delta {{\nu }_{\text{d}}}t+{{\varphi }_{\text{r}}}-{{\varphi }_{\text{m}}}]\}~ \\ \end{align} $
(4) 式中,α=eη/(hν)为光电转换系数,e为电子电量, hν为光子能量,η为探测器的量子效率。
由于光电探测器件的响应速率有限,对于光频信号,只能检测其平均值。因此(4)式中的前3项均为直流分量,第4项为差频项。经直流滤波后,探测器输出的瞬时电流信号为:
$ i\left( t \right)=\alpha {{E}_{\text{r}, 0}}{{E}_{\text{m}, 0}}\text{cos}\left( 2\text{ }\!\!\pi\!\!\text{ }\Delta {{\nu }_{\text{d}}}t+{{\varphi }_{\text{r}}}-{{\varphi }_{\text{m}}} \right)~ $
(5) 假设测量目标的瞬时振动函数可表示为V(t), 则瞬时散斑频移可表示为[5]:
$ \Delta {{\nu }_{\text{d}}}=2vV\left( t \right)/c $
(6) 又设λ为激光波长,s(t)为振动目标的瞬时振动位移,令参考光与测量光的初始相位差φ0=φm-φr,则可得探测器输出的瞬时电流信号为:
$ i\left( t \right)=\alpha {{E}_{\text{r},0}}{{E}_{\text{m},0}}\text{cos}\left[ \frac{4\text{ }\text{ }\!\!\pi\!\!\text{ }\text{ }}{\lambda }s\left( t \right)+{{\varphi }_{0}} \right]~ $
(7) 式中,αEr, 0Em, 0可视为一常数。由式中可以看出,i(t)与s(t)存在频率对应关系,振动信号s(t)与光电流i(t)的角频率呈对应关系,相当于振动信号对光电流信号的频率调制。
因此,可以采用频率解调的方法进行测量,通过对散斑斑点的光电检测,从光电流i(t)的频率变化中解调出被测目标表面相关的振动信号。
-
在对散斑斑点信号进行光电检测的过程中,由于漫反射方向的球面特性,散斑场反馈回检测器件的光强非常弱,信号检测困难,微弱信号检测放大电路设计中必须重点考虑电路的噪声抑制能力。
图 4为光电检测电路的噪声源模型,虚线框内为APD的等效电路。Cd为结电容; Rd为等效电阻; In为运放的输入噪声电流, 当偏置电流为皮安量级的超低偏置电流运放时,对一般实用的反馈电阻,该噪声分量可忽略不计[16]; Un为运放的输入噪声电压; C6为消除振动的反馈电容; I0为信号电流; R3为反馈电阻;ω为通用系数。忽略In的影响,则可推导出运放的输出电压为:
$ {{V}_{1}}=\frac{{{R}_{3}}{{I}_{0}}}{1+j\omega {{R}_{3}}{{C}_{6}}}+\left( 1+\frac{{{R}_{3}}}{{{R}_{\text{d}}}}\frac{1+j\omega {{R}_{\text{d}}}{{C}_{\text{d}}}}{1+j\omega {{R}_{3}}{{C}_{6}}} \right){{U}_{\text{n}}} $
(8) 根据(8)式给出电路信号增益与噪声增益的幅频特性曲线如图 5所示,其中fe为理论上增益为零时的截止频率。信号电流I0为直流或较低频率时,增益系数的值等于电阻值R3, 随着信号频率的增加,电容C6的影响逐渐增大;频率从1/(2πR3C6)开始,电路放大倍数开始下降,噪声增益开始增加。噪声电压与信号电流的幅频特性则相反:在直流段或较低频率时,增益为1+R3/Rd;随着频率的增加,电路噪声增益由于电容Cd的作用开始升高,直到由于电容C6的作用而停止(转折频率为1/(2πR3C6)),噪声增益限定在1+Cd/C6。
可见,加入C6可以限制高频段的噪声增益,同时也会降低高频段的信号增益。为使保证电流放大电路获得足够的响应频带,需降低电阻R3的阻值,C6也只能取小电容。
对于光电检测器件,其内部噪声主要来源于热噪声和散粒噪声。热噪声电压UT均方值取决于材料的温度,并有如下关系[17-19]:
$ {{U}_{T}}^{2}=4kTR\int_{{{f}_{1}}}^{{{f}_{2}}}{R\left( f \right)\text{d}f}~ $
(9) 式中,k为玻尔兹曼常数,T为温度,f为频率,f1和f2分别表示放大电路的通频带的上限频率和下限频率。在通常温度范围内,热噪声和散粒噪声的频谱均可看作是平直的白噪声。电阻R与频率无关,热噪声的输出取决于检测电路的实际通频带Δf=f2-f1,此时(9)式变为:
$ {{U}_{T}}^{2}=4kTR\Delta f~ $
(10) 由此可见,带宽越大,噪声也越大。所以,需要损失一定的高增益带宽来降低噪声。同时,除运放带入噪声外,反馈电阻R3也是一个重要的噪声源,电阻的热噪声输出取决于检测电路的实际通频带Δf。而且UT与R3成正比,因此R3也不能过大。
线激光散斑检测弹幕武器炮口振动测量方法
Method for measuring muzzle vibration of barrage weapons based on line laser speckle detection
-
摘要: 为了解决在弹幕武器射击时的恶劣环境下,频域分布复杂的炮口振动信号测试难题,采用线激光散斑场光电检测方法,研究了振动信号与输出电流数学关系,分析了基于雪崩光电二极管的光电检测电路噪声与幅频特性,提出了一种基于身管表面线激光散斑效应的炮口振动测量的方法,并进行了25m远处的振幅在微米级、频率为50Hz~16kHz振动信号的检测实验。结果表明,线激光散斑检测炮口振动振幅在微米量级。该测量方法具有频率响应范围宽、测量距离远、灵敏度高等优点,实现了远距离、宽频域振动信号的检测。Abstract: In order to solve the testing problem of muzzle vibration signal with complex frequency distribution under the abominable circumstances with the shooting of barrage weapons, the photoelectric detection method based on line laser speckle field was used. The mathematical relationship between the vibration signal and output current was studied, and the noise and amplitude frequency characteristics of photoelectric detection circuit based on avalanche photo diode were analyzed. A method of muzzle vibration measurement based on laser speckle effect of barrel surface was proposed. The detection experiment of vibration signal was carried out at distance of 25m, with amplitude of micron magnitude and frequency of 50Hz~16kHz. The results show that, the vibration amplitude of gun muzzle is μm magnitude. The measurement method has advantages of wide frequency response range, long measurement distance and high sensitivity. Vibration signal detection at long distance and wide frequency range is realized.
-
Key words:
- measurement and metrology /
- muzzle vibration /
- laser speckle /
- spots shift /
- photoelectric detection
-
-
[1] CHEN Y H, GUO M, HE Z Y, et al. Muzzle vibration test method and practice [J]. Journal of Gun Launch & Control, 2010, 26(1): 80-83 (in Chinese). [2] HE K P, XU D, LI H. High precision measurement for barrage weapon dispersion based on large area triangle composite light-screens [J]. Optical Precision Engineering, 2015, 23(6): 1523-1529 (in Chinese). doi: 10.3788/OPE. [3] SHI Y D, WANG D Sh. Study on vibration characteristics of barrel subjected to moving projectile considering inertia effect [J]. Acta Armamentarii, 2011, 32(4): 414-420 (in Chinese). [4] ZHU Y H, HE F T, PENG X L. Research of characteristics of laser speckle of plastic optical fiber [J]. Laser Technology, 2016, 40(1): 122-125 (in Chinese). [5] SHI H, ZHU H, WU J, et al. Research on the technique of vibration frequency remote detection based on speckle pattern[J]. Laser Technology, 2016, 40(6): 801-805(in Chinese). [6] HE K P, XU D, LI H. Modularized parallel signal acquisition system design of massive channels for laser screen target [J]. Laser Technology, 2016, 40(6): 810-813 (in Chinese). [7] AYALA G, RIVERA A L, DÁVILA A, et al. Analysis of mechanical vibrations through speckle interferometry: A phase-space approach [J]. Optik, 2010, 28(5): 2028-2035. [8] CAO Y, HE K P, SHAO S J, et al. Anti-saturation design of photoelectric detection circuit in laser simulation resistance system [J]. Laser & Infrared, 2012, 36(8): 925-927 (in Chinese). [9] ZHANG D B, SONG Y H, WANG Q Sh, et al. Error analysis of laser divergence angle measurement [J]. Laser Technology, 2016, 40(6): 926-929 (in Chinese). [10] MOULDER M J, QIAN J, BEDELL H E. Motion deblurring during pursuit tracking improves spatial-interval acuity [J]. Vision Research, 2013, 81(2): 6-11. [11] GENG T Q, NIU Y X, ZHANG Y, et al. Analysis of detection capability of active laser detection systems [J]. Laser Technology, 2015, 39(6): 509-512 (in Chinese). [12] CHEN Ch, GUO X M, MA J, et al. Measurement of surface roughness based on laser angular-speckle correlation method [J]. Laser Technology, 2015, 39(4): 497-500 (in Chinese). [13] SHI Zh H, LIN G Y, WANG Sh R, et al. Numerical analysis of small particle measurement based on the theory of laser scattering [J]. Infrared and Laser Engineering, 2015, 44(7): 2189-2194 (in Chinese). [14] WANG Y H, FENG J Y, WANG X, et al. Shearing speckle interferometry based on slit aperture for dynamic measurement [J]. Optics and Precision Engineering, 2015, 23(3): 645-651 (in Chinese). doi: 10.3788/OPE. [15] CHEN S T, ZHANG Y, HU H F. Surface roughness measurement based on fractal dimension of laser speckle [J]. Chinese Journal of Lasers, 2015, 42(4): 0408002 (in Chinese). doi: 10.3788/CJL [16] WANG B T. Research on zero differential laser vibration technology[D].Chengdu: University of Electronic Science and Technology of China, 2011: 36-38 (in Chinese). [17] LIU H Y, ZHANG Y G, AI Y, et al. Research of balanced detection techniques for high speed weak optical signal [J]. Laser Technology, 2015, 39(2): 182-184 (in Chinese). [18] HUANG L, ZHANG L Ch, YAN R. Application of high-performance GPU computing in digital speckle pattern recognition algorithms [J]. Journal of Applied Optics, 2015, 36(5): 762-767 (in Chinese). doi: 10.5768/JAO201536.0502006 [19] WANG J F, LIU J Y, ZHAO H, et al. An improved sub-pixel positioning method of laser spot center [J]. Laser Technology, 2016, 39(4): 476-479(in Chinese).