-
所谓光学隧穿效应,又被称为光子隧道效应或者光子隧穿效应[6]。如图 1所示,当光从折射率为n1的介质1入射向折射率为n2的介质2,且满足一定条件时(入射角不小于全反射角θc),就会发生全反射现象。
在距离介质2界面足够近处,放置另外一个折射率为n3的介质3(且n3>n2),只要间隔小到满足一定条件,介质1中的全反射现象就会受到抑制,入射光的一些光子就会穿过光疏介质的势垒,形成传输波传输出去,打破原有的全反射现象,这就是光学隧穿效应[7]。牛顿是最早观察到这种现象的学者[8],并提出了观察这种现象的方法。1965年,普林斯顿大学的研究生COON做了一个光学隧穿效应的实验,分析实验数据得出了透射率与光疏介质厚度之间的关系,与理论相符[9]。考虑特殊的情况,即介质1、介质3的折射率相等,即有n1=n3=n,且n2=1,$(2\pi /\lambda )\cdot \sqrt{{{n}^{2}}\text{si}{{\text{n}}^{2}}\theta -1}\cdot a\ge 1$时(a为介质2的厚度,即隧穿距离),则光学隧穿效应中透射率T,即介质3中透射能流与介质1中入射能流之比[10],可表示为:
$ \begin{align} &T=\frac{16{{n}^{2}}\text{co}{{\text{s}}^{2}}\theta ({{n}^{2}}\text{si}{{\text{n}}^{2}}\theta -1)}{{{({{n}^{2}}-1)}^{2}}}\cdot \text{ } \\ &\text{exp}\left( \frac{-4\pi a}{\lambda }\cdot \sqrt{{{n}^{2}}\text{si}{{\text{n}}^{2}}\theta -1} \right) \\ \end{align} $
(1) 式中, θ为入射角,λ为空气中激光的波长。从上式可以看出,随着光疏介质厚度的增加,隧穿光能量将以指数形式快速衰减,特别是隧穿距离接近入射光波长时,这种变化异常明显。基于(1)式,结合空气中声波的参量,可以利用MATLAB进行数值仿真。仿真条件设为a=[1+Δasin(ωt)]a0,其中Δa代表振源信号的振幅,ω代表角频率,t代表时间,a0=2.186μm代表中心位移,Δa/a0=1%,ω=1Hz,λ=0.6328μm,结果如图 2所示。可以看出,在光学隧穿距离小于波长时,在模拟声波(随时间变化的正弦信号)驱动下,隧穿距离的微小变化将导致透射率的明显变化,相对变化幅度达到10%。这表明:将声波声压转换为光学隧穿距离的变化,通过检测反射光功率的波动就可以实现将声音信号转换为光信号,进而转化为通常的电信号。
一种基于光学隧穿效应的新型拾音器方案探索
A novel pickup scheme based on optical tunneling effect
-
摘要: 为了探索新型高灵敏度光电拾音器技术方案,基于光学隧穿效应研究,将声压变化转换为全反射棱镜中全反射面与摆片光学面之间的光学隧穿距离变化,从而改变光束在棱镜全反面处的反射(透射)损耗,通过直接测量反射(透射)光的功率变化,实现拾音器基本功能。利用半导体激光器和直角全反射棱镜搭建了一套简易的原理验证实验系统,并利用该系统对三角波信号驱动进行了实验。结果表明,反射光功率会随着三角波信号的改变而改变,光功率改变达到5.6%;由声音引起的玻璃振膜距离变化也可改变输出光功率,并被检测出来。初步验证了该方案的可行性。Abstract: In order to explore new high sensitivity schemes of photoelectric pickup, based on the optical tunneling effect, the change of sound pressure was translated into the change of the optical tunneling distance between the total reflection surface and pendulum optical surface of the total reflection prism. The reflection (transmission) loss of the beam at the whole opposite side of the prism was changed. The sound signal was recorded by measuring the power change of the reflected or transmitted light. To demonstrate this scheme, a set of simple experimental system was built with a semiconductor laser and a rectangular-prism, using triangular wave signal to drive the pendulous reed in the experimental apparatus. The results show that the power of the reflected light changes with the change of triangular wave signal. The variation of the power is up to 5.6%. The change of tunneling distance caused by sound signal can also affect the power of the transmitted light. The feasibility of the scheme is verified.
-
Key words:
- laser technique /
- optical pickup /
- optical tunneling effect /
- total internal reflection
-
[1] GU H C, CHENG L, HUANG J B, et al.Time division multiplexing array of fiber laser hydrophone using optical switch[J]. Laser Technology, 2016, 40(4):536-546(in Chinese). [2] ZHENG J, LIANG H, ZHU B.Design and improvement of piezoelectric microphone[J]. Piezoelectrics & Acoustooptics, 2015, 37(3):453-455(in Chinese). [3] ZHENG Ch H, LI K, SUN J.Design and implementation of a pickup for acoustic positioning[J].Science Technology and Engineering, 2016, 16(2):112-115(in Chinese). [4] YU X L, ZHANG Z B, QU Y, et al.Research of long period bending photonic crystal fiber grating sensors[J]. Laser Technology, 2015, 39(4):571-575(in Chinese). [5] TIAN K K, XIAO H, CAO Ch G, et al.Demodulation of fiber Bragg grating sensing system based on WDM fiber coupler[J]. Opto-Electronic Engineering, 2008, 32(2):49-51(in Chinese). [6] LIU Q N, LIU Q.Dispersion characteristics of the total reflection tunnel effect of 1-D photonic crystal[J]. Acta Photonica Sinica, 2013, 42(5):611-615(in Chinese). doi: 10.3788/gzxb [7] LIU Q N, HU Ch H.Polarization and total reflection tunnel effect of flat-panel photonic crystal[J]. Laser Technology, 2012, 36(1):114-117(in Chinese). [8] NEWTON I. Optics[M]. Beijing:Peking University Press, 2007:125-126(in Chinese). [9] COON D D. Counting photons in the optical barrier penetration experiment[J]. American Journal of Physics, 1966, 34(3):240-243. doi: 10.1119/1.1972893 [10] YU D J.Optical tunneling effect[J].College Physics, 1991, 10(2):37-38(in Chinese). [11] HUANG Sh, DENG L M, YANG H, et al.Homogenization design of laser diode based on ZEMAX[J]. Laser Technology, 2014, 38(4):522-526(in Chinese). [12] WANG D, LI X Q.New progress in semiconductor lasers and their applications[J]. Optics and Precision Engineering, 2001, 9(3):279-283(in Chinese). [13] ZHAO Zh W, ZHANG Y J, SHEN Ch.Design of a photoelectric conversion system for pulse laser fuze[J]. Laser Technology, 2012, 36(3):326-329(in Chinese). [14] MAO W, ZHANG Sh L, ZHANG L Q, et al.Optical feedback effect and the optical feedback interferometry for sensing application[J]. Optical Technique, 2007, 33(1):16-22(in Chinese). [15] ZHAO H, HUA D X, DI H G, et al.Development of all time multi-wavelength lidar system and analysis of its signal to noise ratio[J]. Chinese Journal of Lasers, 2015, 42(1):0113001(in Chinese). doi: 10.3788/CJL [16] ZHU X P, GAN Q Q, REN G, et al.Experimental research of relative intensity noise of semiconductor lasers[J]. Laser Technology, 2005, 29(3):241-243(in Chinese). [17] ZENG Zh L, DU Sh G, SUN T, et al.Polarization controlling in laser feedback and its application[J]. Laser Journal, 2015, 36(7):5-7(in Chinese). [18] XIE H B, YAO L J, LI Y, et al.Design of panoramic laser receiving optical system based on prism[J]. Laser Technology, 2014, 38(5):586-589(in Chinese). [19] WU F G, CAI Ch W, XU Zh.Theory of vibration[M].Beijing:Higher Education Press, 1987:21-30(in Chinese).