-
单纵模DBR光纤激光器的每个纵模由两个正交偏振态简并组成,当激光器的腔内产生双折射效应时,两个偏振态产生退简并,导致激光输出的单纵模中两个偏振模式频率分裂,在频域内产生偏振拍频信号[8-11]。基于正交双频光纤激光器拍频信号的调制是以DBR光纤激光器作为传感元件,将外界物理参量的变化转换为DBR光纤激光器输出拍频信号的频率变化,通过感测拍频信号的频率变化来间接反映外界参量的变化过程。
DBR光纤激光声发射传感器拍频与双折射的关系式如下[12]:
$ \left\{ {\begin{array}{*{20}{c}} {\Delta \nu = c\frac{{{n_y} - {n_x}}}{{2{n_0}^2\mathit{\Lambda }}} = \frac{c}{{{n_0}\lambda }}B}\\ {B = {n_y} - {n_x}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \end{array}} \right. $
(1) 式中, DBR光纤激光器的平均折射率为n0,Bragg光纤光栅波长是λ,光纤的双折射用B来表示, 拍频用Δν来表示,光在光纤中沿两个偏正方向x轴和y轴传播的折射率分别用nx和ny表示,Λ为光栅周期,c为光纤中的光速。
根据腐蚀声发射的频率特性,DBR光纤激光器的检测频带范围为0MHz~1MHz,稳定激光输出波长为1550nm,在结构上能实现光场与声场的换能转变,选用掺铒有源光纤制作,有效腔长1cm,其中铒元素所占的质量分数为0.0004,实验中采用的DBR光纤激光器如图 1所示。
实验中所采用的材料是Q235碳钢。Q235碳钢中除了含有铁元素外,还含有碳、硅、磷等元素,而这些元素的电极电位是不相同的,当Q235和呈酸性的电解质溶液发生反应时,就会进行析氢电化学过程。随着腐蚀地进一步加剧,Q235钢板上接触到腐蚀液的地方因为析氢的过程加剧而产生许多小孔。而产生的氢气会在这种小孔中逐渐扎推,并和铁板孔中的物质进行结合,也称为凝结核[11]。当气体不断在小孔中聚集,就会引发铁板的小孔处的破裂,破裂瞬间会对铁板有一个应力脉冲的冲击(冲击力大小用F表示),这个脉冲冲击就是一个声发射信号。
Q235碳钢片腐蚀引起的碳钢片自由振动引起的DBR拍频Δν的变化量δ(Δν)的关系式如下[13]:
$ \delta (\Delta \nu ) = \frac{{2c{n_0}^2\left( {{p_1} - {p_2}} \right)(1 + \nu )cos(2\theta )}}{{{\lambda _0}\pi rE}}\frac{F}{l} $
(2) 式中,n0是光纤的平均折射率,p1和p2是弹光系数,ν表示泊松比,θ表示受力方向与主光轴的夹角,$\frac{F}{l} $表示光纤受压的线密度,F是DBR谐振腔所受的压力大小,l是DBR谐振腔的有效长度, r表示裸光纤的半径,E表示光纤的材料杨氏模量。
当DBR谐振腔在声场作用下发生应变ε,光纤折射率与应变ε的关系式如下:
$ {n_\varepsilon } = \frac{{\frac{c}{{2\Delta {\nu _\varepsilon }}} - \frac{c}{{2\Delta {\nu _0}}} + nl}}{{l(1 + \varepsilon )}} $
(3) 式中, nε表示声场作用下谐振腔产生应变ε光纤的折射率,n为无声场作用下光纤的折射率,Δνε表示DBR谐振腔在声场作用下谐振腔产生应变ε后新的拍频,Δν0表示没有声场作用下的拍频,l表示DBR谐振腔的有效长度。
偏振正交双频DBR腐蚀声发射传感器研究
Study on corrosion acoustic emission sensor based on orthogonally polarized dual-frequency DBR laser
-
摘要: 为了实现基于光纤传感器的金属腐蚀在线监测,以金属Q235腐蚀声发射在线监测为目标,采用分布式布喇格反射(DBR)光纤激光器作为腐蚀声发射传感器的方法,通过对偏振正交DBR光纤激光器的工作机理及模型进行研究,分析了偏振正交双频DBR激光器用于腐蚀声发射传感器的谐振腔参量对其性能影响的规律,并进行了基于偏振正交双频DBR激光器的声发射检测实验,实现了偏振正交DBR光纤激光器的优化设计,提出了表征Q235碳钢腐蚀阶段的特征量。结果表明,偏振正交DBR光纤激光器不仅能实现对金属腐蚀声信号的检测,其检测频带范围为0MHz~1MHz,还能实现通过平均拍频值的变化来表征金属腐蚀主要的3个腐蚀阶段。该研究为偏振正交DBR腐蚀声发射传感器及组网的优化设计与制作提供了理论和技术基础,对金属腐蚀特别是核级关键材料的在线腐蚀监测具有重要意义。
-
关键词:
- 光纤光学 /
- 分布式布喇格反射声发射传感器 /
- 正交解析 /
- 新型传感器
Abstract: In order to realize on-line monitoring of metal corrosion based on optical fiber sensors, a distributed Bragg reflection(DBR) fiber laser was used as the corrosion acoustic emission sensor, aiming at on-line monitoring of metal Q235 corrosion acoustic emission. The working mechanism and model of polarized orthogonal DBR fiber laser were studied, and the influence of resonator parameters of polarized orthogonal dual-frequency DBR laser as corrosion acoustic emission sensor on the performance was analyzed. The acoustic emission detection experiment based on polarized orthogonal dual-frequency DBR laser was carried out. The optimum design of polarized orthogonal DBR fiber laser was experimentally studied, and the characteristics of the corrosion stage of Q235 carbon steel were presented. The results show that polarized orthogonal DBR fiber laser can not only detect metal corrosion acoustic signal, but also characterize three major corrosion phases of metal corrosion by the variation of the average beat frequency values with the detection frequency range of 0MHz~1MHz. The research project provides the theoretical and technical basis for the optimization design and fabrication of polarized orthogonal DBR corrosion acoustic emission sensors and networks. It is of great significance on on-line corrosion monitoring of metal corrosion, especially nuclear grade key materials. -
-
[1] YU K, WU C, SUN M, et al. Fiber laser sensor for simultaneously axial strain and transverse load detection[J]. Measurement, 2015, 62(1):137-141. [2] GENG R Sh, FU G Q. Evaluation of corrosion damage using acoustic emission testing[J].Acta Acustica, 2004, 29(1):6-11(in Chinese). [3] ZHANG Y, GUAN B O, TAM H Y. Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement[J]. Optics Communications, 2008, 281(18):4619-4622. doi: 10.1016/j.optcom.2008.05.039 [4] SPIEGELBERG C, GENG J, HU Y, et al. Low-noise narrow-linewidth fiber laser at 1550nm[J]. Journal of Lightwave Technology, 2004, 22(1):57-62. doi: 10.1109/JLT.2003.822208 [5] GUAN B O, TAN Y N, TAM H Y. Dual polarization fiber grating laser hydrophone[J]. Optics Express, 2009, 17(22):19544-19550. doi: 10.1364/OE.17.019544 [6] LIANG Y, YUAN Q, JIN L, et al. Effect of pump light polarization and beat note stabilization for dual-polarization fiber grating laser sensors[J]. Quantum Electron, 2014, 20(5):555-562. doi: 10.1109/JSTQE.2014.2304181 [7] TUAN G, ALLAN C L W, LIU W Sh, et al. Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection[J]. Optics Express, 2011, 19(3):2485-2494. doi: 10.1364/OE.19.002485 [8] LIU B, ZHANG H. Polarimetric distributed Bragg reflector fiber laser sensor array for simultaneous measurement of transverse load and temperature[J]. Optical Fiber Technology, 2011, 17(6):619-625. doi: 10.1016/j.yofte.2011.09.002 [9] GUAN B O, TAM H Y, LAU S T, et al. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser[J]. IEEE Photonics Technology Letters, 2005, 17(1):169-171. doi: 10.1109/LPT.2004.838141 [10] LIMA H F, ANTUNES P F, PINTO L J, et al. Simultaneous measurement of strain and temperature with a single fiber Bragg grating written in a tapered optical fiber[J]. IEEE Sensors Journal, 2010, 10(2):269-273. doi: 10.1109/JSEN.2009.2030261 [11] OLIVEIRA R, OSÍRIO J H, ARISTILDE S, et al. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings[J].Measurement Science and Technology, 2016, 27(7):1-6. [12] GUAN B O, SUN X S, TAN Y N. Dual polarization fiber grating laser accelerometer[C]//Fourth European Workshop on Optical Fibre Sensors.Washington DC, USA: International Society for Optics and Photonics, 2010: 76530Z. [13] WANG W K, DU G, ZENG Zh M, et al. Acoustic emission characteristics of the corrosion process of 304 nitrogen controlled stainless steel in acidic NaCl2 solution[J].CIESC Journal, 2010, 61(4):916-922(in Chinese). [14] TAN Y N, ZHANG Y, JIN L, et al. Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement[J]. Optics Express, 2011, 19(21):20650-20656. doi: 10.1364/OE.19.020650 [15] SUN L Y, LI Y B, JIN Sh J, et al. Analysis of fluid load influence on propagation and attenuation charactersistics of acoustic emission wave[J]. Chinese Journal of Scientific Instrument, 2008, 29(8):1617-1621(in Chinese). [16] OU G Zh. Engineering vibration[M].Wuhan:Wuhan University Press, 2003:532-543(in Chinese). [17] MALLAT S G. Multiresolution approximations and wavelet orthonormal bases of L2(R)[J]. Transactions of the American Mathematical Society, 1989, 315(1):69-87.