-
包层光滤除器的目标是滤除光纤内包层的残留光,且满足两大原则:(1)在较短的距离内滤除残留的内包层光;(2)不能影响纤芯内传输的信号光。由于高功率双包层光纤激光器热效应严重制约着光纤激光器的输出功率和光束质量[18],因此,应该均匀地将包层光滤除出来,避免集中滤除形成高温热点,影响包层光滤除器以及光纤激光器的稳定性。此外,散热方法对滤除器的温度控制也很重要。
双包层光纤由纤芯、内包层、外包层和保护层组成。如图 1所示,将双包层光纤一定长度的涂覆层及外包层去除,在双包层光纤内包层的外表面,涂覆折射率大于或等于内包层折射率的导光胶,将涂覆的导光胶制作成特定形状的级联结构,破坏光线传播的全反射条件,使残留光折射出光纤内包层。然后,将所得到的级联结构从冷却管套轴向穿过,在冷却套管内壁铺满吸热材料,以吸收从光纤包层滤出的光。并在冷却管道中通入循环流动的去离子水,进行冷却。
-
在双包层光纤中,信号光在线芯中传输,包层光在内包层与外包层界面被多次反射,只有满足全反射条件的光线才能被限制在包层内传输,在光纤内部通常存在子午光线和偏斜光线两类光线。图 2所示为光纤内子午光线的全反射示意图。其中内包层折射率为n2, 外包层折射率为n3,θz为内包层内的光线与光纤轴线间的夹角。根据Snell定律,能够使光线在光纤纤壁界面产生内全反射的条件是:
$ \text{cos}{{\theta }_{z}}\ge \frac{{{n}_{3}}}{{{n}_{2}}}或者\text{ sin}{{\theta }_{z}}\le \sqrt{1-{{\left( \frac{{{n}_{3}}}{{{n}_{2}}} \right)}^{2}}} $
(1) 因此对于子午光线,能产生全反射的约束条件为:
$ {{\mathit{n}}_{\text{i}}}\sin {{\theta }_{\text{i}}}\le \sqrt{{{n}_{2}}^{2}-{{n}_{3}}^{2}} $
(2) 式中,θi为光线入射角。阶跃型光纤的数值孔径DNA为入射媒质折射率与最大入射角的正弦之积,即:
$ {{D}_{\text{NA}}}={{n}_{\text{i}}}\text{sin}{{\theta }_{\text{i, }m}}=\sqrt{{{n}_{2}}^{2}-{{n}_{3}}^{2}}={{n}_{\text{i}}}\sqrt{2\mathit{\Delta }} $
(3) 式中,Δ为折射率差。则能够进入光纤且在光纤中传播的光线落在以θi, m为锥角的圆锥之内,它表明了在光纤内对传播光线的束缚能力与内外包层间的折射率差相关。
而对于偏斜光线,由于传播时不与纤轴相交,因而不限于单一平面内,光线轨迹为螺旋状折线,限制在圆筒内传播,由Snell定律及几何关系,在光纤端面有:
$ {{n}_{2}}\text{sin}{{\theta }_{2}}={{n}_{2}}\text{sin}{{\theta }_{z}}\le \frac{\sqrt{{{n}_{2}}^{2}-{{n}_{3}}^{2}}}{\text{sin}{{\theta }_{\phi }}} $
(4) 因此,偏斜光线对应的数值孔径DNAs为:
$ {{D}_{\text{NAs}}}=\frac{{{D}_{\text{NA}}}\prime }{\text{sin}{{\theta }_{\phi }}} $
(5) 式中,DNA′为子午光线数值孔径,θϕ为偏斜光线在光纤截面上的投影线与反射点处纤壁切线的夹角。由此可见,考虑到偏斜光线的贡献,光纤的实际收光能力比单纯考虑子午光线时更大。
双包层光纤中内包层的光经过滤除段时,由于涂覆的导光胶水的折射率与内包层的折射率匹配,将泄露到导光胶中传播。如图 1所示,光线在涂覆层的出射界面与光纤轴线成一定的角度γ,由几何关系可以得出,出射光线在涂覆层中的出射角将比光线在内包层中的出射角减小γ,当涂覆层内出射角小于全反射临界角时,出射光线将不满足全反射条件,从而从涂覆层中折射出来。进一步地,通过增大涂覆间隔,改变涂覆层的密度,可以降低包层光滤除出光纤的速率。通过这些参量的改变,可以很容易地控制内包层残留光滤除出双包层光纤的速率,从而优化包层光滤除器的结构,达到均匀滤除内包层残留光的效果。
高功率光纤激光器的残留包层光滤除研究
Study on cladding light strippers in high power fiber lasers
-
摘要: 为了提高大功率双包层光纤激光器的光束质量、光谱特性以及光纤系统的稳定性,设计了一种用于滤除光纤内包层残留光的新型高功率包层光滤除器。采用蒙特卡洛算法以及光线轨迹追踪法对包层光滤除器进行了数值计算,评估包层光滤除器的滤除能力,并借助计算流体力学软件ANSYS,分析包层光滤除器的温度场分布。结果表明,优化级联结构后的包层光滤除器的滤除效果达到16.7dB,降低了包层光滤除器的热点温度,在600W的输入功率下,热点温度降低了20.8℃,实现了包层光功率的均匀滤除;在滤除功率达到千瓦量级时,该包层光滤除器仍能够稳定工作在70℃以内,满足大功率光纤激光器系统稳定运行的要求。Abstract: In order to improve the beam quality and spectral characteristics of a high power double clad fiber laser and improve the stability of the optical fiber system, a novel high power cladding light stripper was designed to strip the residualoptical power in the fiber cladding. High power cladding light stripper was analyzed through theoretical calculation and simulation analysis. Based on the Monte Carlo algorithm and light trajectory tracking method, the performance of the cladding light stripper was calculated. With the aid of computational fluid dynamics software ANSYS, the temperature field distribution of the cladding light stripper was analyzed. After optimizing the cascade model structure, strip efficiency of the stripper can reach up to 16.7dB, the hot-spot temperature of the cladding light stripper was reduced, and uniform strip was realized, hot-spot temperature was decreased 20.8℃ under the input power of 600W. The results show that the cladding light stripper can work stably at 70℃ when the power reaches the kilowatt level, it can meet the requirements of high power fiber laser systems.
-
Key words:
- fiber optics /
- fiber laser /
- double clad fiber /
- cladding light stripper
-
-
[1] FANG G, XU X T, QUAN E CH, et al. Research of Yb-doped double-clad fiber lasers[J]. Laser Technology, 2014, 38(2): 278-282(in Chinese). [2] ZENG H F, XIAO F H, The development of Yb-doped double-clad fiber laser and its application[J]. Laser Technology, 2006, 30(4): 438-441(in Chinese). [3] WETTER A, FAUCHER M, SÉVIGNY B. High power cladding light strippers[J]. Proceedings of the SPIE, 2008, 6873: 687327. doi: 10.1117/12.763003 [4] ANDEREGG J, BROSNAN S J, THIELEN P A. System and method to remove light from cladding: US 7349596[P]. 2008-03-25. [5] KLINER D, TUCKER D A, LUGO J. Scalable cladding mode stripper device: US 8027555[P]. 2011-09-27. [6] MELESHKEVICH M, ILYASHENKO V, SHKURIKHIN O. High power fiber laser system with cladding light stripper: US 7839901[P]. 2010-11-23. [7] ALESHKINA S, KOCHERGINA T A, BOBKOV K K, et al. High-power 125μm-optical-fiber cladding light stripper[C]//2016 Conference on Laser and Electro-Optics(CLEO). Washington DC, USA: Optical Society of America, 2016: JTu5A. 106. [8] GUO W, CHEN Z, ZHOU H, et al. Comparison of different methods for stripping cladding light in the high-power fiber laser[J].Proceedings of the SPIE, 2013, 8904: 89041B. [9] GUO W, CHEN Z, ZHOU H, et al. Cascaded cladding light extracting strippers for high power fiber lasers and amplifiers[J]. IEEE Photonics Journal, 2014, 6(3): 1-6. [10] WANG W, LENG J, CAO J, et al. Method for stripping cladding light in the high power fiber laser[J]. Optics Communications, 2013, 287(2):187-191. [11] ESH R, NOROUZY A, GOLSHAN A H, et al. A novel method for stripping cladding lights in high power fiber lasers and amplifiers[J]. Journal of Lightwave Technology, 2012, 30(20): 3199-3202. doi: 10.1109/JLT.2012.2213295 [12] KLINER A, HOU K C, PLÖTNER M, et al. Fabrication and evaluation of a 500W cladding-light stripper[J].Proceedings of the SPIE, 2013, 8616: 86160N. doi: 10.1117/12.2001984 [13] BABAZADEH A, NASIRABAD R R, NOROUZEY A, et al. Robust cladding light stripper for high-power fiber lasers using soft metals[J]. Applied Optics, 2014, 53(12): 2611-2615. doi: 10.1364/AO.53.002611 [14] LANGSETH J E, MANL A E. All glass fiber laser cladding mode stripper: US 8433161[P]. 2013-04-30. [15] LI T, WU J, SUN Y, et al. An improved method for stripping cladding light in high power fiber lasers[J].Proceedings of the SPIE, 2015, 9255: 92550M. doi: 10.1117/12.2065357 [16] BANSAL L, SUPRADEEPA V R, KREMP T, et al. High power cladding mode stripper[J].Proceedings of the SPIE, 2015, 9344:93440F. doi: 10.1117/12.2079181 [17] BOYD K, SIMAKOV N, HEMMING A, et al. CO2 laser-fabricated cladding light strippers for high-power fiber lasers and amplifiers[J]. Applied Optics, 2016, 55(11): 2915-2920. doi: 10.1364/AO.55.002915 [18] CHEN Z L, HOU J, JIANG Z F. Theoretical study on the thermal effect in Yb-doped double-clad high power fiber laser[J]. Laser Technology, 2007, 31(5): 544-547(in Chinese).