-
基于可饱和吸收体的锁模光纤激光器的实验装置图如图 1所示。其中由一个976nm半导体激光器(laser diode,LD)作为抽运源,通过一个980nm/1550nm的波分复用器(wavelength division multiplexer, WDM)进入环形腔,环形腔中使用一段掺铒光纤(erbium-doped fiber, EDF)作为增益介质,而两段标准单模光纤(single-mode fiber, SMF)以及一段色散补偿光纤(dispersion compensating fiber, DCF)来控制环形腔内的色散,隔离器(isolator,ISO)和偏振控制器(polarization controller, PC)分别控制脉冲的传播方向和偏振方向,可饱和吸收体(saturable absorber,SA)是锁模激光器重要的锁模器件,最后激光器通过一个分光比为20/80的输出耦合器作为激光的输出。数值计算中的各项参量分别列在表 1中,表中SMF2控制腔内净色散,g0保证激光器单脉冲输出。
fiber type β2/(ps2·km-1) γ/(W-1·km-1) L/m g0 /m EDF 38 5.3 4 variable SMF1 -22 1.1 4 0 SMF2 -22 1.1 variable 0 DCF 123 3.8 2 0 光脉冲在光纤中的演化过程可以用以下非线性薛定谔方程描述[14]:
$ \begin{align} & \frac{\partial A(z, \tau )}{\partial z}+\frac{\text{i}}{2}{{\beta }_{2}}\frac{{{\partial }^{2}}A(z, \tau )}{\partial {{\tau }^{2}}}= \\ & \frac{g}{2}A(z, \tau )+\text{i}\gamma {{\left| A\left( z, \tau \right) \right|}^{2}}A\left( z, \tau \right)+ \\ & \text{ }\frac{g}{2{{\mathit{\Omega }}^{2}}}\frac{{{\partial }^{2}}A(z, \tau )}{\partial {{\tau }^{2}}~} \\ \end{align} $
(1) 式中,A(z, τ)是脉冲包络的慢变振幅,z是沿光纤的传输距离,τ是时间参量,β2和γ分别为群速度色散参量和非线性系数,Ω为增益带宽,g为增益系数。在SMF和DCF中,g=0;在EDF中,g可以用以下公式表示:
$ g=\frac{{{g}_{0}}}{1+E/{{E}_{\text{sat}}}} $
(2) 式中,g0为小信号增益系数,E和Esat分别表示脉冲能量和增益饱和能量。这里忽略了光纤的损耗、高阶色散以及其它非线性效应。
这个模型中的锁模器件是可饱和吸收体,它的非线性透过率可以表示为:
$ T=1-\Delta T\exp \left( -\frac{P}{{{P}_{\text{sat}}}} \right)-\alpha $
(3) 式中,ΔT, Ps和Psat分别表示可饱和吸收体的调制深度、脉冲功率以及可饱和吸收体的饱和功率,α为可饱和吸收体的固有损耗。通过这个表达式可以发现,可饱和吸收体的透过率在脉冲功率高的部分透过率高,而在脉冲功率低的位置透过率低,如图 2所示[15]。
本次模拟中主要采用分步傅里叶的方法进行数值求解,将一个随机噪声信号作为模拟的初始信号,在谐振器内不断循环直至达到稳定的自洽状态。假定连续两次循环输出脉冲强度的相对误差不大于0.1%时,激光器达到稳定状态。模拟中采用的参量为:Esat=10pJ,ΔT=20%,Ω=40nm,Psat=72W,α=0.55,其余参量参照表 1。
单脉冲锁模光纤激光器输出特性的数值研究
Numerical study on output characteristics of single-pulse mode-locked fiber lasers
-
摘要: 为了研究不同腔内净色散下单脉冲被动锁模光纤激光器的输出特性,采用以非线性薛定谔方程为数学模型和分步傅里叶的方法,对激光脉冲在腔内的演化进行了理论分析。获得了在保持单脉冲稳定输出时激光器一些参量与腔内净色散的变化关系,并针对净色散为正的情况,对输出脉冲进行了腔外解啁啾压缩,压缩比达到10倍以上,分析了压缩所需的负色散值以及压缩后脉宽的情况。结果表明,小信号增益系数最大值与净腔色散大体上成正比关系,且当小信号增益系数达到最大值时,输出脉冲的脉宽以及相应的时间带宽积呈现逐渐增加的趋势,3dB带宽则呈现出先增加后减少的趋势。该研究结果为优化被动锁模光纤激光器提供了参考。Abstract: In order to analyze the output characteristics in single-pulse mode-locked fiber lasers with different net cavity dispersion, a numerical model based on the nonlinear Schr dinger equation is conducted to analyze the pulse evolution in the cavity by using the split-step Fourier method. According to the numerical simulation, the relationship between some parameters in fiber lasers and the net cavity dispersion is proven theoretically, and in the case that the net cavity dispersion is positive, the output pulse is compressed outside the cavity numerically and the compression ratio reaches up to ten times. Then the values of the required dispersion and the pulse width after compression are calculated. The results show that the maximum small-signal gain coefficient is proportional to the net cavity dispersion in general. And when the small-signal gain coefficient reaches the maximum value, the pulse width and the time-bandwidth product(TBP) increase gradually, and the 3dB bandwidth increases first and then decreases with the increase of the net cavity dispersion. The conclusion can provide reference for optimizing passively mode-locked fiber lasers.
-
Key words:
- lasers /
- nonlinear Schr dinger equation /
- saturable absorber /
- single pulse /
- chirp
-
-
[1] FERMANN M E, HARTL I. Ultrafast fiber laser technology[J].IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1):191-206. doi: 10.1109/JSTQE.2008.2010246 [2] SIBBETT W, LAGATSKY A A, BROWN C T. The development and application of femtosecond laser systems[J]. Optics Express, 2012, 20(7):6989-7001. doi: 10.1364/OE.20.006989 [3] KALISKY Y. Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser[J]. IEEE Journal of Quantum Electronics, 1995, 31(10):1738-1741. doi: 10.1109/3.466043 [4] DEMARIA A J, STETSER D A, HEYNAU H. Self mode-locking of lasers with saturable absorbers [J]. Applied Physics Letters, 1966, 8(7):174-176. doi: 10.1063/1.1754541 [5] ZHAO Y, LIU Y Zh, ZHAO D Sh, et al. Evolution of mode-locked technology of fiber lasers[J]. Laser Technology, 2009, 33(2):162-165(in Chinese). [6] CABASSE A, MARTEL G, OUDAR J L. High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror[J]. Optics Express, 2009, 17(12):9537-9542. doi: 10.1364/OE.17.009537 [7] TANG D Y, ZHAO L M. Generation of 47fs pulses directly from an erbium-doped fiber laser[J]. Optics Letters, 2007, 32(1):41-43. [8] SAKAKIBARA Y, TATSUURA S, KATAURA H, et al. Near-infrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation method[J]. Japanese Journal of Applied Physics, 2003, 42(5A):L494-L496. [9] SUN Z, HASAN T, TORRISI F, et al. Graphene mode-locked ultrafast laser[J]. ACS Nano, 2009, 4(2):803-810. [10] XIA H D, LI H P, WANG Z G, et al. Nanosecond pulse generation in a graphene mode-locked erbium-doped fiber laser[J]. Optics Communications, 2014, 330:147-150. doi: 10.1016/j.optcom.2014.05.048 [11] WANG J, CAI Z, XU P, et al. Pulse dynamics in carbon nanotube mode-locked fiber lasers near zero cavity dispersion[J]. Optics Express, 2015, 23(8):9947-9958. doi: 10.1364/OE.23.009947 [12] LU H T, WANG F, DENG T. Study of the self-similar evolution for optical pulse in nonlinearity-increasing fibers[J]. Laser Technology, 2010, 34(2):218-220(in Chinese). [13] JEON J, LEE J, JU H L. Numerical study on the minimum modulation depth of a saturable absorber for, stable fiber laser mode locking[J]. Journal of the Optical Society of America, 2015, B32(1):31-37. [14] AGRAWAL G P. Nonlinear fiber optics[M]. 3th ed. San Diego, California, USA: Academic Press, 2001:39-51. [15] WISE F W, CHONG A, RENNINGER W H. High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion[J]. Laser & Photonics Reviews, 2008, 2(1/2):58-73.