-
整个系统涉及的环节较多,在时域不便分析,在S域(复频域)建立各模块的数学模型。由图 1可知,TEC为系统的执行结构。TEC的工作原理如图 2所示[11-12]。设TEC的制热系数为E,传热系数为k,接触面积为A,初始温度为T0,制热后的温度为T1,单位时间内制冷器产生的热量为ΔQ。由能量守恒定律可得:
$ {\rm{ }}E\frac{{\partial \left( {{T_1} - {T_0}} \right)}}{{\partial t}} + kA({T_1} - {T_0}) = \Delta Q $
(1) $ Q = \frac{{{U^2}}}{R} $
(2) 式中,U表示TEC两端电压,R表示TEC的电阻值。可知Q和U成非线性关系, ΔT=T1-T0,ΔU为TEC两端温度变化后电压的变化值:
$ E\frac{{\partial \Delta T}}{{\partial t}} + kA\Delta T = \Delta Q = \Delta U\cdot\frac{{\Delta Q}}{{\Delta U}} $
(3) 转化为S域的方程为:
$ \frac{{\frac{{\Delta Q}}{{\Delta U}}}}{{Es + kA}} = \frac{{\Delta T}}{{\Delta U}} = \frac{{\frac{{\Delta Q}}{{\Delta UkA}}}}{{Es\frac{1}{{kA}} + 1}}{\rm{ }} $
(4) 令$ \frac{{\Delta Q}}{{\Delta UkA}} = P, \frac{E}{{kA}} = {\tau _1}, \frac{{\Delta T}}{{\Delta U}} = G\left( s \right), G(s)$为TEC在S域的传递函数, s是复频率。
$ G\left( s \right) = \frac{P}{{{\tau _1}s + 1}} $
(5) (5) 式表明, TEC为1阶惯性环节[13-14]。测量反馈单元近似为比例环节[14], 即系统的反馈传递函数H(s)=K, K是比例系数。半导体激光器温度是一个缓慢变化的过程,控制对象LD的传递函数为1阶惯性环节[14],则执行结构和控制对象为一个双极点系统。本文中采用MAX1978中的TEC双系统模型,极点可近似为0.01Hz和1Hz。其对应波特图如图 3所示[15]。
-
为保证系统的温控性能,采用经典PID控制。PID控制器的经典电路结构及其波特如图 4所示。由PID控制器补偿之前的波特图如图 3所示,按照自动控制原理中波特图补偿步骤[15]。考虑到相位裕度等性能指标,补偿电路的第1个拐点频率为0.16Hz,第2个拐点选择穿越频率为1.5Hz,第3个拐点频率为7.5Hz。PID控制器的配置电阻电容取值见图 4a[15],图 4b为图 4a对应的幅值, 即增益的波特图,纵坐标表示20lgAg,其中Ag为图 4a对应的传递函数的增益。
-
DRV595是一款高效、高电流的功率驱动器。单电源供电,供电范围4.5V~26V,最大可产生±4A的输出电流,内部PWM方式运行和低输出级电阻大大降低了放大器内的功率耗散,广泛应用于TEC驱动。DRV595内部高达1.2MHz的开关频率,外围滤波需要的电容值变小,从而减小了整个电路印制电路板(printed circuit board, PCB)尺寸,达到小型化的目的。
PWM功率放大器可分为三部分:控制电路部分、电压-脉宽转换电路部分、开关式功率驱动电路部分。DRV593采用了先进的PWM技术,其电路包括输入控制部分、三角波发生器部分、H桥电路驱动逻辑控制部分以及H桥电路。各引脚号、引脚定义、功能如表 1所示[16]。
Table 1. Pin definition and function
name of pin description SDZ shutdown logic input IN+, IN- positive and negative differential input GND ground Hi-Z input for fast disable/enable of outputs FS2, FS1, FS0 frequency selection input SYNC clock input/output for synchronizing multiple devices PVCC power supply BSP, BSN boot strap for negative and output OUTP, OUTN output 设置后的TEC驱动电路如图 5所示。虽然DRV595采用脉冲宽度调制,但是最终输出的是连续变化的模拟量与控制端输入电压信号成线性关系。图 5中R19的阻值为20kΩ,R16不焊。DRV595的输出电压和输入电压关系式[16]为:
$ \begin{array}{l} {V_{{\rm{TEC}}}} = K \times ({V_{{\rm{IN + }}}} - {V_{{\rm{IN - }}}}) = \\ K \times ({V_{{\rm{CTLI}}}} - 2.5{\rm{V}}) \end{array} $
(6) 式中,取K=10,在S域中为比例环节。
-
在外界环境温度为19℃、稳定温度为25℃时, 当激光器温度稳定情况下, 每2min记录一次,连续记录20个数据, 该温度值如表 2所示。从表中可知温控的精度为±0.03℃,工作稳定,满足系统要求。
Table 2. Temperature of laser diode
time/min temperature/℃ 2 24.983 4 24.982 6 24.999 8 24.010 10 25.019 12 25.018 14 25.023 16 25.021 18 25.029 20 25.028 22 25.014 24 25.023 26 25.010 28 25.014 30 25.025 32 25.004 34 25.021 36 25.007 38 25.015 40 24.99
基于DRV595的激光器恒温控制系统
Constant temperature control systems for semiconductor lasers based on DRV595
-
摘要: 半导体激光器的输出波长和功率随温度变化而变化,为了确保激光器工作性能,须对其进行恒温控制。采用脉冲宽度调制功率驱动器DRV595驱动半导体制冷器的方法,设计了一种双向大电流输出的高精度温度控制系统。在S域对系统进行了建模分析,搭建经典比例-积分-微分控制器,采用桥式采样电阻,纯硬件电路实现,结构简单,省掉了数字控制器的复杂软件编写。在常温试验中取得了±0.03℃的控制精度,DRV595集成脉冲宽度调制和双向MOSFET,输出电流最大为±4A。双向电流驱动半导体热电制冷器,实现了无死区控制。结果表明,脉冲宽度调制方式驱动和低输出级电阻大大降低了功率耗散。该系统工作稳定、功耗低、控制精度较高,具有实用价值。Abstract: The output wavelength and power of a semiconductor laser varied with the temperature. In order to ensure the performance of laser, constant temperature must be controlled. A high precision temperature control system of bidirectional high current output was designed by using pulse width modulation power driver DRV595 to drive the semiconductor cooler. In the S domain, the system was modeled and analyzed, and the classical proportional-integral-differential controller was built. The bridge type sampling resistor was adopted to realize the pure hardware circuit. The structure was simple, and the complex software of the digital controller was omitted. After normal temperature test, the control accuracy of ±0.03℃ was achieved. Pulse width modulation and bidirectional MOSFET were integrated in DRV595. The biggest output current was ±4A. No-dead-time control was realized by using bi-directional current to drive semiconductor cooler. The results show that pulse width modulation mode drive and low output stage resistor greatly reduce power dissipation. The system has the advantages of stable operation, low power consumption, high control accuracy and practical value.
-
Table 1. Pin definition and function
name of pin description SDZ shutdown logic input IN+, IN- positive and negative differential input GND ground Hi-Z input for fast disable/enable of outputs FS2, FS1, FS0 frequency selection input SYNC clock input/output for synchronizing multiple devices PVCC power supply BSP, BSN boot strap for negative and output OUTP, OUTN output Table 2. Temperature of laser diode
time/min temperature/℃ 2 24.983 4 24.982 6 24.999 8 24.010 10 25.019 12 25.018 14 25.023 16 25.021 18 25.029 20 25.028 22 25.014 24 25.023 26 25.010 28 25.014 30 25.025 32 25.004 34 25.021 36 25.007 38 25.015 40 24.99 -
[1] ZHAO G, LI J, PENG X J, et al. Compact repetitive diode-pumped slab lasers without thermoelectric coolers[J]. Laser Technology, 2016, 40(5):625-628(in Chinese). [2] REN W B, DONG Sh Y, XU B Sh, et al.Research advance and development of laser remanufacture closed-loop control systems[J]. Laser Technology, 2016, 40(1):103-108(in Chinese). [3] CHEN W, YANG Zh, ZHANG W.Design of high precision laser temperature control circuit[J]. Laser Technology, 2014, 38(5):669-674(in Chinese). [4] LIAO Zh Y, DENG H F, WU L H, et al. Design of high precision constant temperature control systems based on laser diodes[J]. Laser Technology, 2012, 36(6):771-775(in Chinese). [5] XU G P, FENG G X, GENG L.Temperature control of high density TEC based on MCU operation[J]. Laser & Infrared, 2009, 39(3):254-256(in Chinese). [6] YUAN J G, ZHAN Ch, LI X G, et al. Accurate controlling system of the output and frequency for laser diodes[J]. Laser Technology, 2014, 30(6):650-663(in Chinese). [7] FANG L H, WEN J G, JIANG Y Ch, et al. Design of a temperature control system for semiconductor laser based on digital filtering[J]. Laser Technology, 2016, 40(5):701-705(in Chinese). [8] WANG Z Q, DUAN J, ZENG X Y. Research of precise temperature control systems of high -power semiconductor lasers[J]. Laser Technology, 2015, 39(3):353-356(in Chinese). [9] GAO P D, ZHANG F Q.Design and implementation control system for high precision temperature of semiconductor lasers[J]. Laser Technology, 2014, 38(2):353-356(in Chinese). [10] LÜ F, GAO F, ZHENG Q, et al. Application of temperature control system based on AND8831 in laser[J]. Journal of Hefei University of Technology, 2011, 34(7):1096-1099(in Chinese). [11] JIANG H L. Design of thermostat system for high power semiconductor laser[J]. Semiconductor Optoelectronics, 2004, 25(4):320-322(in Chinese). [12] WANG X Z, HOU H Y, ZHAI Zh Sh, et al. Mathematical modeling and parameter identidication of temperature control system based on thermoelectric[J]. Laser Technology, 2015, 39(6):789-793(in Chinese). [13] YAN S, LI D G, YU Zh L. Research on the simulation of temperature control of semiconductor laser based on ADRC[J]. Industrial Instrumentation and Automation, 2013(1):3-5(in Chinese). [14] LI Q. Study on temperature control system of laser diode[D]. Qinhuangdao: Yanshan University, 2010: 15-25(in Chinese). [15] MAXIM INTEGRATED PRODUCTS INC. MAX1978/MAX1979 integrated temperature controller for peltier modules[EB/OL]. (2003-05-10)[2016-10-30]. http://www.maximintegrated.com. [16] TEXAS INSTRUMENTS. 15V/±4A high-efficiency PWM power driver (Rev. A)[EB/OL]. (2013-05-13)[2016-10-30]. http://www.ti.com.cn.