高级检索

准分子激光器中张氏面型电极的电场仿真研究

朱能伟, 方晓东, 梁勖, 赵读亮

朱能伟, 方晓东, 梁勖, 赵读亮. 准分子激光器中张氏面型电极的电场仿真研究[J]. 激光技术, 2017, 41(5): 680-683. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.012
引用本文: 朱能伟, 方晓东, 梁勖, 赵读亮. 准分子激光器中张氏面型电极的电场仿真研究[J]. 激光技术, 2017, 41(5): 680-683. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.012
ZHU Nengwei, FANG Xiaodong, LIANG Xu, ZHAO Duliang. Simulation study on electric field of Chang electrodes in excimer lasers[J]. LASER TECHNOLOGY, 2017, 41(5): 680-683. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.012
Citation: ZHU Nengwei, FANG Xiaodong, LIANG Xu, ZHAO Duliang. Simulation study on electric field of Chang electrodes in excimer lasers[J]. LASER TECHNOLOGY, 2017, 41(5): 680-683. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.012

准分子激光器中张氏面型电极的电场仿真研究

基金项目: 

国家自然科学基金资助项目 61307112

详细信息
    作者简介:

    朱能伟(1988-), 男, 博士研究生, 现从事准分子激光器结构方面的研究

    通讯作者:

    梁勖, E-mail:liangxu@aiofm.ac.cn

  • 中图分类号: TN248.2

Simulation study on electric field of Chang electrodes in excimer lasers

  • 摘要: 为了获得准分子激光器高脉冲能量输出,采用张氏面型电极的理论,设计了一套能产生大面积均匀电场的紧凑型电极。通过ANSYS软件数值仿真获得了电极表面电场分布,并与紧凑型张氏面型电极的理论计算结果进行了对比验证;分析了紫外火花预电离结构对电极放电的影响,并进行了电位和电场分布仿真。结果表明,预电离板的存在直接影响了电极之间的电位和电场分布;电场仿真结果解释了预电离板的顶端与阳极形成放电的原因。该研究为大面积辉光放电电极设计提供了更深入的理论支持。
    Abstract: In order to obtain high pulsed energy output from an excimer laser, the Chang's electrode theory was used to design a compact electrode for producing large area uniform electric field. Through numerical simulation of ANSYS software, the electric field distribution on the electrode surface was obtained and compared with the theoretical results of the compact Chang electrode. The effect of ultraviolet pre ionization structure on electrode discharging was analyzed. The potential and electric field distribution were simulated. The results show that the presence of preionization plate directly affects the potential and electric field distribution between electrodes. The simulation results of electric field can be used to explain the formation of discharging between the top of preionization plate and anode. The study provides deeper theoretical support for the design of large area glow discharge electrodes.
  • Figure  1.   Electrode construction and discharge circuit

    Figure  2.   Meshing result

    Figure  3.   Simulation results of electrodes

    a—contour graph of electric potential b—contour graph of electric field c—vector graph of electric field d—electric field distribution on the surface of normalized electrode

    Figure  4.   Simulation results of electrodes with preionization plates

    a—contour graph of electric potential b—contour graph of electric field

    Figure  5.   Schematic diagram of discharging between the top of preionization plate and anode

    Figure  6.   Contour graph of electric field after increasing the height of the top of preionization plates

  • [1]

    BASTING D, STAMM U. The development of excimer laser technolo- gy-history and future prospects[J]. International Journal of Research in Physical Chemistry & Chemical Physics, 2001, 215(15):75-79.

    [2]

    YU Y Sh, YOU L B, LIANG X, et al. Progress of excimer lasers technology[J]. Chinese Journal of Lasers, 2010, 37(9):2253-2269(in Chinese). DOI: 10.3788/CJL

    [3]

    CHANG T Y. Improved uniform-field electrode profiles for TEA CO2 laser and high-voltage application[J]. Review of Scientific Instruments, 1973, 44(4):405-407. DOI: 10.1063/1.1686144

    [4]

    ERNST G J. Uniform-field electrodes with minimum width[J]. Optics Communications, 1984, 49(4):275-277. DOI: 10.1016/0030-4018(84)90190-1

    [5]

    STAPPAERTS E A. A novel analytical design method for discharge laser electrode profiles[J]. Applied Physics Letters, 1982, 40(12):1018-1019. DOI: 10.1063/1.92993

    [6]

    JUDD O P. An efficient electrical CO2 laser using preionization by ultraviolet radiation[J]. Applied Physics Letters, 1973, 22(3):95-96. DOI: 10.1063/1.1654576

    [7]

    von BERGMANN H M, HASSON V. Low-impedance high-voltage pulsers for travelling-wave excitation of high-power UV gas lasers[J]. Journal of Physics, 1976, E9(11):982-984. DOI: 10.1088-0022-3735-9-11-027/

    [8]

    HASAMA T, MIYAZAKI K, YAMADA K, et al. 50J discharge-pumped XeCl laser[J].IEEE Journal of Quantum Electronics, 1989, 25(1):113-120. DOI: 10.1109/3.16250

    [9]

    ZHAO X, ZUO D L, LU H, et al. Comparison of several discharge electrodes for TEA CO2 laser[J]. High Power Laser and Particle Beams, 2006, 18(4):569-574(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200604011

    [10]

    CHEN Y Q, ZUO D L, CHENG Z H. Effects of electrode profiles on the discharge of transversly excited atmospheric pressure CO2 laser[J]. Journal of Propulsion Technology, 2007, 28(5):550-554(in Chinese).

    [11]

    SHENG Y G, WAN C Y. Design for 3-D uniform field electrodes[J]. Chinese Journal of Lasers, 2000, 27(12):1093-1096(in Chinese).

    [12]

    AN R, TAN R Q, GUO Y D, et al. Field uniformity of electrode system with preionization structure for TEA CO2 laser[J]. High Power Laser and Particle Beams, 2009, 21(9):1281-1285(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs200909001

    [13]

    CHEN J X, XU X Y, WANG Y. Electrodes system design and electric field simulation research of ArF excimer laser[J]. Laser & Optoelectronic Progress, 2014, 51(1):011402(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGDJ201401019.htm

    [14]

    ZHAO J M, YOU L B, YU Y Sh. Characteristics of KrF excimer laser with an output of 0.73J[J]. High Power Laser and Particle Beams, 2013, 25(11):3060-3064(in Chinese). DOI: 10.3788/HPLPB

    [15]

    FENG C Zh, MA X K. Introduction to engineering electromagnetic field[M]. Beijing:Higher Education Press, 2000:1-35(in Chinese).

图(6)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 修回日期:  2016-11-29
  • 发布日期:  2017-09-24

目录

    /

    返回文章
    返回