-
紧凑型张氏面型曲线是通过保角变换和归一化处理后得到的,其曲线和曲线电场强度表达式为:
$ x = \frac{{u + k{\rm{cos}}v{\rm{sinh}}u}}{{v + k{\rm{sin}}v}} $
(1) $ y = \frac{{v + k{\rm{sin}}v{\rm{cosh}}u}}{{v + k{\rm{sin}}v}} $
(2) $ v = {\rm{ \mathsf{ π} }}/2 + {\rm{arcsin}}k + t $
(3) $ \begin{array}{l} \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;E = {\rm{ }}\\ {\left[ {\frac{{{{(1 + k{\rm{cos}}v{\rm{cosh}}u)}^2} + {{(k{\rm{sin}}v{\rm{sinh}}u)}^2}}}{{{{(1 + k{\rm{cos}}v)}^2}}}} \right]^{ - 0.5}} \end{array} $
(4) 式中,x和y为归一化后空间坐标,u为电通量,v为电位函数,宽窄特征常数k>0,t是一个微小调节量,E为归一化后电极表面电场分布。对于给定一个k和t值, x, y, E是关于u的函数。
当t=0时,(1)式~(2)式构成一条“最大平坦”条件下归一化张氏面型曲线。
当t>0时,(1)式~(2)式构成一条归一化紧凑型张氏面型曲线。在u=±ud时, 将获得两个电场强度峰值E(ud)和E(-ud), ud可表示为:
$ {u_{\rm{d}}} = {\rm{arcosh}}\left( {\frac{{ - {\rm{cos}}v}}{k}} \right) $
(5) 此时的电场不均匀度δm为:
$ {\delta _{\rm{m}}}{\rm{ = }}\frac{{E\left( {{u_{\rm{d}}}} \right) - E\left( 0 \right)}}{{E\left( 0 \right)}} $
(6) 取k=0.458和t=0.079,设计一副用于大面积辉光放电的紧凑型张氏面型电极。电极间距30mm,电极宽度40mm,长度510mm。图 1是电极及预电离结构与放电主回路原理图[14]。高压电源(high voltage source, HVS)通过电感L1、电阻R和二极管D给储能电容C1和C2充电。当充电到位时,闸流管开关S导通,储能电容C2经过电感L2形成电压反转,储能电容C1和C2电压叠加,磁开关(magnetic switch,MS)前端电压继续提升。当达到设计的伏秒积分值时,磁开关导通,储能电容C1和C2通过电感L4和火花预电离放电通道后,向放电电容C3转移能量, C3通过紧凑型张氏电极形成大面积辉光放电。火花预电离放电通道由带有间隙的预电离针和预电离板构成。在火花预电离放电形成后,预电离针对电极主放电无影响,但是预电离板和阴极电极是连接在一起的,它们是等位体。预电离板的存在直接影响了电位和电场强度分布。
-
电极静电场仿真实质是在给定区域内,对电极加载电位,求解该区域内的电位函数或电场强度分布。该问题可以归结为在给定边界条件下求解泊松方程的边值问题。电位φ的泊松方程[15]为:
$ {\nabla ^2}\varphi = - \rho /\varepsilon $
(7) 式中,ρ为体电荷密度;ε为气体的介电常数。在气体未击穿前,假定自由电荷仅分布在电极表面,在电极之外不存在自由电荷,即电极之外区域的体电荷密度ρ=0。泊松方程化为简单的拉普拉斯方程:
$ {\nabla ^2}\varphi = 0 $
(8) 边界条件为:阴极表面电位φ=U(U为给定电压);阳极表面电位φ=0。
通过ANSYS软件求解(8)式,可以得到电极间各点的电位φ,根据E=-▽φ可以计算出电极间各点的电场强度E。
-
在ANSYS软件中导入紧凑型张氏面型电极实际模型,并在外围增加一个边长为240mm的正方形作为无穷远边界条件。电极是一个等势体,其中电极内部电场为0,无需考虑电极内部情况,只需在电极表面加载电位边界条件。采用三角形网格对模型进行网格划分,其结果如图 2所示。
图 2中网格划分结果显示电极之间区域网格密集有利于在电极放电区获得较高的仿真精度,无穷远处区域网格稀疏有利于减少计算时间。对阴极和阳极分别加载电压载荷-30kV和0V后,对模型进行计算求解。
准分子激光器中张氏面型电极的电场仿真研究
Simulation study on electric field of Chang electrodes in excimer lasers
-
摘要: 为了获得准分子激光器高脉冲能量输出,采用张氏面型电极的理论,设计了一套能产生大面积均匀电场的紧凑型电极。通过ANSYS软件数值仿真获得了电极表面电场分布,并与紧凑型张氏面型电极的理论计算结果进行了对比验证;分析了紫外火花预电离结构对电极放电的影响,并进行了电位和电场分布仿真。结果表明,预电离板的存在直接影响了电极之间的电位和电场分布;电场仿真结果解释了预电离板的顶端与阳极形成放电的原因。该研究为大面积辉光放电电极设计提供了更深入的理论支持。Abstract: In order to obtain high pulsed energy output from an excimer laser, the Chang's electrode theory was used to design a compact electrode for producing large area uniform electric field. Through numerical simulation of ANSYS software, the electric field distribution on the electrode surface was obtained and compared with the theoretical results of the compact Chang electrode. The effect of ultraviolet pre ionization structure on electrode discharging was analyzed. The potential and electric field distribution were simulated. The results show that the presence of preionization plate directly affects the potential and electric field distribution between electrodes. The simulation results of electric field can be used to explain the formation of discharging between the top of preionization plate and anode. The study provides deeper theoretical support for the design of large area glow discharge electrodes.
-
Key words:
- optical devices /
- lasers /
- electric field distribution /
- numerical simulation /
- compact Chang electrode
-
-
[1] BASTING D, STAMM U. The development of excimer laser technolo- gy-history and future prospects[J]. International Journal of Research in Physical Chemistry & Chemical Physics, 2001, 215(15):75-79. [2] YU Y Sh, YOU L B, LIANG X, et al. Progress of excimer lasers technology[J]. Chinese Journal of Lasers, 2010, 37(9):2253-2269(in Chinese). doi: 10.3788/CJL [3] CHANG T Y. Improved uniform-field electrode profiles for TEA CO2 laser and high-voltage application[J]. Review of Scientific Instruments, 1973, 44(4):405-407. doi: 10.1063/1.1686144 [4] ERNST G J. Uniform-field electrodes with minimum width[J]. Optics Communications, 1984, 49(4):275-277. doi: 10.1016/0030-4018(84)90190-1 [5] STAPPAERTS E A. A novel analytical design method for discharge laser electrode profiles[J]. Applied Physics Letters, 1982, 40(12):1018-1019. doi: 10.1063/1.92993 [6] JUDD O P. An efficient electrical CO2 laser using preionization by ultraviolet radiation[J]. Applied Physics Letters, 1973, 22(3):95-96. doi: 10.1063/1.1654576 [7] von BERGMANN H M, HASSON V. Low-impedance high-voltage pulsers for travelling-wave excitation of high-power UV gas lasers[J]. Journal of Physics, 1976, E9(11):982-984. [8] HASAMA T, MIYAZAKI K, YAMADA K, et al. 50J discharge-pumped XeCl laser[J].IEEE Journal of Quantum Electronics, 1989, 25(1):113-120. doi: 10.1109/3.16250 [9] ZHAO X, ZUO D L, LU H, et al. Comparison of several discharge electrodes for TEA CO2 laser[J]. High Power Laser and Particle Beams, 2006, 18(4):569-574(in Chinese). [10] CHEN Y Q, ZUO D L, CHENG Z H. Effects of electrode profiles on the discharge of transversly excited atmospheric pressure CO2 laser[J]. Journal of Propulsion Technology, 2007, 28(5):550-554(in Chinese). [11] SHENG Y G, WAN C Y. Design for 3-D uniform field electrodes[J]. Chinese Journal of Lasers, 2000, 27(12):1093-1096(in Chinese). [12] AN R, TAN R Q, GUO Y D, et al. Field uniformity of electrode system with preionization structure for TEA CO2 laser[J]. High Power Laser and Particle Beams, 2009, 21(9):1281-1285(in Chinese). [13] CHEN J X, XU X Y, WANG Y. Electrodes system design and electric field simulation research of ArF excimer laser[J]. Laser & Optoelectronic Progress, 2014, 51(1):011402(in Chinese). [14] ZHAO J M, YOU L B, YU Y Sh. Characteristics of KrF excimer laser with an output of 0.73J[J]. High Power Laser and Particle Beams, 2013, 25(11):3060-3064(in Chinese). doi: 10.3788/HPLPB [15] FENG C Zh, MA X K. Introduction to engineering electromagnetic field[M]. Beijing:Higher Education Press, 2000:1-35(in Chinese).