-
规定以光纤光栅的最左端为起始点,电弧等离子体放电从左至右,对整个栅区进行扫描。实验中所需的6根光纤光栅,栅区长度均为10mm,将其分别标记为Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, Ⅵ。Ⅰ号光纤光栅为参考光栅。设置电弧等离子体放电功率为30mW, 40mW, 50mW, 60mW和70mW,以0.15mm/s的速率分别对Ⅱ~Ⅵ号光纤光栅的栅区进行放电扫描,扫描次数1次。扫描结束后,将Ⅰ~Ⅵ号光栅放入高温炉中进行退火。
表 1是第1组实验中Ⅰ~Ⅵ号光纤光栅初始、放电扫描后、高温退火后的透射谱深度、中心波长、3dB带宽的值。从表中可以看到,参考光纤光栅经过高温退火后,透射谱深度由原来的14dB减小至11dB,Ⅱ号光纤光栅经电极放电扫描后的透射谱深度为12dB,退火后的透射谱深度为11dB。电弧等离子体放电扫描后,Ⅲ~Ⅵ号光栅透射谱深度均低于11dB,高温退火后透射谱深度保持不变,仍为11dB。经电弧等离子体放电扫描后,Ⅱ~Ⅵ号光纤光栅的中心波长蓝移。高温退火后,中心波长较之于退火前,仍发生了一定量的蓝移。
Table 1. The grating parameters of Ⅰ-Ⅵ fiber gratings at different stages
label parameter original after discharging after annealing transmission/dB 14 11 Ⅰ wavelength/nm 1552.49 1551.74 3dB bandwidth/nm 0.2054 0.1818 transmission/dB 14 12 11 Ⅱ wavelength/nm 1552.84 1552.8 1552.07 3dB bandwidth/nm 0.2029 0.1895 0.1774 transmission/dB 14 10 10 Ⅲ wavelength/nm 1552.33 1552.22 1551.54 3dB bandwidth/nm 0.2097 0.1758 0.1763 transmission/dB 14 8 8 Ⅳ wavelength/nm 1552.89 1552.75 1552.08 3dB bandwidth/nm 0.205 0.1574 0.159 transmission/dB 14 6 8 Ⅴ wavelength/nm 1552.61 1552.36 1552.2 3dB bandwidth/nm 0.1942 0.1411 0.1405 transmission/dB 14 4 4 Ⅵ wavelength/nm 1552.58 1552.17 1552.14 3dB bandwidth/nm 0.2012 0.1306 0.1301 由上述可知,较之于退火前,经高功率放电扫描的FBG透射谱深度在退火后未发生变化,但中心波长有一定量的蓝移。该现象说明在单次放电扫描的情况下,单纯地提高电弧等离子体的放电功率,可以使FBG透射谱深度达到退火要求,但中心波长却无法满足。为了使经过电弧等离子体处理后的FBG在退火后,透射谱深度、中心波长均不发生改变,本文中进行了下一步实验,即在一定放电功率下,增加放电扫描次数。
-
设置电弧等离子体放电功率为固定值55mW,以光纤光栅的最左端为起始点,电弧等离子体放电从左至右,以0.15mm/s的速率对整个栅区来回进行扫描,扫描次数记为N。光纤光栅初始透射谱深度14dB,中心波长1552.57nm,3dB带宽0.2057nm,栅区长度10mm。光纤光栅标记为14dB-FBG。
图 2为第0次、第1次、第10次、第20次、第50次放电扫描结束后记录的14dB-FBG透射谱。由图中曲线可以看出,经过第1次电极扫描放电后,透射谱深度、3dB带宽明显下降,中心波长蓝移明显。
Figure 2. Relationship between transmission and wavelength of 14dB-FBG under different discharging times
光纤光栅透射谱深度、中心波长、3dB带宽随实验次数的变化趋势如图 3所示。随着放电次数的增多,FBG的透射谱深度、中心波长、3dB带宽变化逐渐平缓,最终保持不变,达到饱和。饱和状态下的光纤光栅透射谱深度为5dB,中心波长1551.90nm,3dB带宽0.1771nm。将饱和后的光纤光栅放入高温炉中进行退火处理。对比退火前与退火后的透射光谱和反射谱,如图 4所示。
Figure 4. a—transmission of 14dB-FBG before and after annealing b—reflection of 14dB-FBG before and after annealing
退火前后,光栅光谱特性一致。该现象表明以一定放电功率的电弧等离子体,多次扫描栅区可实现FBG的退火。然而,此时14dB-FBG的透射谱深度仅为5dB,影响了光纤光栅的反射率。为了提高电弧等离子体退火FBG的透射谱深度,采用初始透射谱深度更大的FBG进行实验。
电弧等离子体放电功率依然为固定值55mW,以同样的速度和方法对透射谱深度23dB,中心波长1552.09nm,3dB带宽0.2784nm,栅区长度10mm的光纤光栅栅区进行放电扫描。光纤光栅标记为23dB-FBG。随着实验次数的增加,其透射谱变化情况以及透射谱深度、中心波长、3dB带宽的变化趋势分别如图 5和图 6所示。
从图中可以看到,随着实验次数的增加,23dB-FBG透射谱深度、中心波长、3dB带宽变化逐渐平缓,最终保持不变,达到饱和。实验结果与14dB-FBG一致。饱和状态下的23dB-FBG透射谱深度10dB,中心波长1551.25nm,3dB带宽0.1771nm。透射谱深度大于14dB-FBG饱和状态下的5dB。对比退火前与退火后的透射谱与反射谱,如图 7所示,光栅光谱特性一致。说明经电弧等离子体多次放电扫描后,23dB-FBG实现了完全退火且此时仍旧具有较大的透射谱深度。
基于电弧等离子体的光纤光栅快速退火的研究
Research of rapid annealing of fiber Bragg gratings based on arc plasma
-
摘要: 为了实现光纤布喇格光栅的快速退火,采用高温电弧等离子体热处理光纤光栅的方法,设计了相关实验进行验证。由实验可知,透射谱深度23dB、中心波长1552.09nm、3dB带宽0.2784nm的光纤光栅,经电弧等离子体放电扫描后,光纤光栅的透射谱深度减小,3dB带宽变窄,中心波长蓝移;随着重复扫描次数的增加,各参量变化趋势减缓,最终透射谱深度减小13dB、中心波长蓝移0.84nm、3dB带宽变窄0.1013nm;将电弧等离子体处理后的光纤光栅放入高温炉24h退火后,透射谱深度、中心波长、3dB带宽均不再发生变化。结果表明,将电弧等离子体用于光纤布喇格光栅的退火处理是可行的,并且具有周期短、涂覆层无损伤的优点。Abstract: In order to realize rapid annealing of fiber Bragg gratings, high temperature arc plasma heat treatment method was adopted. The related experiments were designed for verification. A fiber Bragg grating (FBG) with transmission spectrum depth of 23dB, central wavelength of 1552.09nm and 3dB bandwidth of 0.2784nm was scanned by arc plasma discharging. The results show that the transmission spectrum depth is reduced, the 3dB bandwidth is narrowed and the central wavelength shows blue shift. The variation trend of each parameter is slowed down with the increasing of the repetitive scanning times. Finally, the transmission spectrum depth is reduced by 13dB, the central wavelength is shifted blue by 0.84nm and the 3dB bandwidth is narrowed by 0.1013nm. After fiber grating is annealed in a high temperature furnace for 24h, the transmission spectrum depth, central wavelength and 3dB bandwidth remain the same. It is feasible to use arc plasma for the annealing of FBG with the advantages of short cycle and no damage of the coating layer.
-
Key words:
- gratings /
- annealing /
- arc plasma /
- spectral characteristics
-
Table 1. The grating parameters of Ⅰ-Ⅵ fiber gratings at different stages
label parameter original after discharging after annealing transmission/dB 14 11 Ⅰ wavelength/nm 1552.49 1551.74 3dB bandwidth/nm 0.2054 0.1818 transmission/dB 14 12 11 Ⅱ wavelength/nm 1552.84 1552.8 1552.07 3dB bandwidth/nm 0.2029 0.1895 0.1774 transmission/dB 14 10 10 Ⅲ wavelength/nm 1552.33 1552.22 1551.54 3dB bandwidth/nm 0.2097 0.1758 0.1763 transmission/dB 14 8 8 Ⅳ wavelength/nm 1552.89 1552.75 1552.08 3dB bandwidth/nm 0.205 0.1574 0.159 transmission/dB 14 6 8 Ⅴ wavelength/nm 1552.61 1552.36 1552.2 3dB bandwidth/nm 0.1942 0.1411 0.1405 transmission/dB 14 4 4 Ⅵ wavelength/nm 1552.58 1552.17 1552.14 3dB bandwidth/nm 0.2012 0.1306 0.1301 -
[1] WANG Y P, TANG J, YIN G L, et al. The fabrication method and sensing application of fiber grating[J]. Journal of Vibration, Measurment & Diagonosis, 2015, 35(5):809-819(in Chinese). [2] XU H F, YANG Zh Ch, LIU Sh Ch, et al. Application of fiber Bragg grating sensing technology in bridge piles[J]. Journal of China University of Metrology, 2012, 23(1):52-56(in Chinese). [3] COELHO L, VIEGAS D, SANTOS J L, et al. Optical sensor based on hybrid FBG/titanium dioxide coated LPFG for monitoring organic solvents in edible oils[J]. Talanta, 2016, 148(1):170-176. [4] WANG Ch, NI J Sh, WANG J Q, et al. All-fiber velocity sensors applicated in wind power generation and their fabrication process[J]. Laser Technology, 2012, 36(5):689-692(in Chinese). [5] LIU Sh Zh, ZHANG X, ZHENG X, et al. Application of distributed fiber Bragg grating sensor system in reactor coating layer[J]. Yunnan Electric Power, 2016, 44(1):87-89(in Chinese). [6] YU H Y, QIN X H, LIU Y D, et al. High-precision FBG sensor for human body temperature detection[J]. Optical Communication Technology, 2016, 40(4):33-35(in Chinese). [7] LIU Y Y, JIANG F X, HOU J P, et al. Research of inscription technique for multi-wavelength array fiber gratings in ribbon fiber[J]. Laser Technology, 2015, 39(4):484-487(in Chinese). [8] ZHONG X Y, WANG Y P, QU J L, et al. High-sensitivity strain sensor based on inflated long period fiber grating[J]. Optics Letters, 2014, 39(18):5463-5466. doi: 10.1364/OL.39.005463 [9] WILLIAMS R J, KRÄMER R G, NOLTE S, et al. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique[J]. Optics Letters, 2013, 38(11):1918-1920. doi: 10.1364/OL.38.001918 [10] GUO J C, YU Y S, XUE Y, et al. Compact long-period fiber gratings based on periodic microchannels[J]. IEEE Photonics Technology Letters, 2013, 25(2):111-114. doi: 10.1109/LPT.2012.2227701 [11] NOORDEGRAAF D, SCOLARI L, LAGSAARD J, et al. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers[J]. Optics Express, 2007, 15(13):7901-7912. doi: 10.1364/OE.15.007901 [12] LEMAIRE P J, ATKINS R M, MIZRAHI V, et al. High pressure H2, loading as a techniquefor achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2, doped optical fibres[J]. Electronics Letters, 1993, 29(13):1191-1193. doi: 10.1049/el:19930796 [13] NOGUCHI K, EUSUGI N, NEGISHI Y. Loss increase for optical fibers exposed to hydrogenatmosphere[J]. Journal of Lightwave Technology, 1985, 3(2):236-243. doi: 10.1109/JLT.1985.1074175 [14] ATKINS R M, LEMAIRE P J, ERDOGAN T, et al. Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses[J]. Electronics Letters, 1993, 29(14):1234-1235. doi: 10.1049/el:19930825 [15] LI J Zh, JIANG D Sh. Hydrogen loading and fiber Bragg grating[J]. Chinese Journal of Material Research, 2006, 20(5):517-522(in Chinese). [16] LI Y, ZHAO H, ZHU Ch, et al. Study on fiber gratings technology[J]. Laser and Infrared, 2006, 36(s1):749-754(in Chinese). [17] BISBEE D L. Splicing silica fibers with an electric arc[J]. Applied Optics, 1976, 15(3):796-798. doi: 10.1364/AO.15.000796 [18] REGO G. Fibre optic devices produced by arc discharges[J]. Journal of Optics, 2010, 12(11):113002. doi: 10.1088/2040-8978/12/11/113002 [19] ZHENG W N, ZHU L Q, ZHUNG W, et al. Influence of electrode discharge on fiber Bragg grating spectral characteristics[J]. Chinese Journal of Lasers, 2016, 43(7):0706003(in Chinese). doi: 10.3788/CJL