高级检索

基于电弧等离子体的光纤光栅快速退火的研究

李凯, 辛璟焘, 夏嘉斌, 祝连庆

李凯, 辛璟焘, 夏嘉斌, 祝连庆. 基于电弧等离子体的光纤光栅快速退火的研究[J]. 激光技术, 2017, 41(5): 649-653. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.006
引用本文: 李凯, 辛璟焘, 夏嘉斌, 祝连庆. 基于电弧等离子体的光纤光栅快速退火的研究[J]. 激光技术, 2017, 41(5): 649-653. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.006
LI Kai, XIN Jingtao, XIA Jiabin, ZHU Lianqing. Research of rapid annealing of fiber Bragg gratings based on arc plasma[J]. LASER TECHNOLOGY, 2017, 41(5): 649-653. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.006
Citation: LI Kai, XIN Jingtao, XIA Jiabin, ZHU Lianqing. Research of rapid annealing of fiber Bragg gratings based on arc plasma[J]. LASER TECHNOLOGY, 2017, 41(5): 649-653. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.006

基于电弧等离子体的光纤光栅快速退火的研究

基金项目: 

国家自然科学基金面上资助项目 51675053

国家八六三高技术研究发展计划资助项目 2015AA042308

教育部"长江学者和创新团队"发展计划资助项目 IRT1212

详细信息
    作者简介:

    李凯(1992-), 男, 硕士研究生, 主要从事光纤传感技术方面的研究

    通讯作者:

    祝连庆, E-mail:zhulianqiang@sina.com

  • 中图分类号: TN253

Research of rapid annealing of fiber Bragg gratings based on arc plasma

  • 摘要: 为了实现光纤布喇格光栅的快速退火,采用高温电弧等离子体热处理光纤光栅的方法,设计了相关实验进行验证。由实验可知,透射谱深度23dB、中心波长1552.09nm、3dB带宽0.2784nm的光纤光栅,经电弧等离子体放电扫描后,光纤光栅的透射谱深度减小,3dB带宽变窄,中心波长蓝移;随着重复扫描次数的增加,各参量变化趋势减缓,最终透射谱深度减小13dB、中心波长蓝移0.84nm、3dB带宽变窄0.1013nm;将电弧等离子体处理后的光纤光栅放入高温炉24h退火后,透射谱深度、中心波长、3dB带宽均不再发生变化。结果表明,将电弧等离子体用于光纤布喇格光栅的退火处理是可行的,并且具有周期短、涂覆层无损伤的优点。
    Abstract: In order to realize rapid annealing of fiber Bragg gratings, high temperature arc plasma heat treatment method was adopted. The related experiments were designed for verification. A fiber Bragg grating (FBG) with transmission spectrum depth of 23dB, central wavelength of 1552.09nm and 3dB bandwidth of 0.2784nm was scanned by arc plasma discharging. The results show that the transmission spectrum depth is reduced, the 3dB bandwidth is narrowed and the central wavelength shows blue shift. The variation trend of each parameter is slowed down with the increasing of the repetitive scanning times. Finally, the transmission spectrum depth is reduced by 13dB, the central wavelength is shifted blue by 0.84nm and the 3dB bandwidth is narrowed by 0.1013nm. After fiber grating is annealed in a high temperature furnace for 24h, the transmission spectrum depth, central wavelength and 3dB bandwidth remain the same. It is feasible to use arc plasma for the annealing of FBG with the advantages of short cycle and no damage of the coating layer.
  • Figure  1.   Experimental setup for FBG excited by arc plasma discharge

    Figure  2.   Relationship between transmission and wavelength of 14dB-FBG under different discharging times

    Figure  3.   The changing trend of 14dB-FBG parameters under different discharging times

    Figure  4.   a—transmission of 14dB-FBG before and after annealing b—reflection of 14dB-FBG before and after annealing

    Figure  5.   Transmission spectrum of 23dB-FBG under different discharging times

    Figure  6.   The changing trend of 23dB-FBG parameters under different discharging tiems

    Figure  7.   Comparison of 23dB-FBG

    Table  1   The grating parameters of Ⅰ-Ⅵ fiber gratings at different stages

    label parameter original after discharging after annealing
    transmission/dB 14 11
    wavelength/nm 1552.49 1551.74
    3dB bandwidth/nm 0.2054 0.1818
    transmission/dB 14 12 11
    wavelength/nm 1552.84 1552.8 1552.07
    3dB bandwidth/nm 0.2029 0.1895 0.1774
    transmission/dB 14 10 10
    wavelength/nm 1552.33 1552.22 1551.54
    3dB bandwidth/nm 0.2097 0.1758 0.1763
    transmission/dB 14 8 8
    wavelength/nm 1552.89 1552.75 1552.08
    3dB bandwidth/nm 0.205 0.1574 0.159
    transmission/dB 14 6 8
    wavelength/nm 1552.61 1552.36 1552.2
    3dB bandwidth/nm 0.1942 0.1411 0.1405
    transmission/dB 14 4 4
    wavelength/nm 1552.58 1552.17 1552.14
    3dB bandwidth/nm 0.2012 0.1306 0.1301
    下载: 导出CSV
  • [1]

    WANG Y P, TANG J, YIN G L, et al. The fabrication method and sensing application of fiber grating[J]. Journal of Vibration, Measurment & Diagonosis, 2015, 35(5):809-819(in Chinese).

    [2]

    XU H F, YANG Zh Ch, LIU Sh Ch, et al. Application of fiber Bragg grating sensing technology in bridge piles[J]. Journal of China University of Metrology, 2012, 23(1):52-56(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjlxyxb201201010

    [3]

    COELHO L, VIEGAS D, SANTOS J L, et al. Optical sensor based on hybrid FBG/titanium dioxide coated LPFG for monitoring organic solvents in edible oils[J]. Talanta, 2016, 148(1):170-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8c00761eacfa02d4e739f82f9e3039db

    [4]

    WANG Ch, NI J Sh, WANG J Q, et al. All-fiber velocity sensors applicated in wind power generation and their fabrication process[J]. Laser Technology, 2012, 36(5):689-692(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201205029

    [5]

    LIU Sh Zh, ZHANG X, ZHENG X, et al. Application of distributed fiber Bragg grating sensor system in reactor coating layer[J]. Yunnan Electric Power, 2016, 44(1):87-89(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yndljs201601027

    [6]

    YU H Y, QIN X H, LIU Y D, et al. High-precision FBG sensor for human body temperature detection[J]. Optical Communication Technology, 2016, 40(4):33-35(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtxjs201604011

    [7]

    LIU Y Y, JIANG F X, HOU J P, et al. Research of inscription technique for multi-wavelength array fiber gratings in ribbon fiber[J]. Laser Technology, 2015, 39(4):484-487(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201504012.htm

    [8]

    ZHONG X Y, WANG Y P, QU J L, et al. High-sensitivity strain sensor based on inflated long period fiber grating[J]. Optics Letters, 2014, 39(18):5463-5466. DOI: 10.1364/OL.39.005463

    [9]

    WILLIAMS R J, KRÄMER R G, NOLTE S, et al. Femtosecond direct-writing of low-loss fiber Bragg gratings using a continuous core-scanning technique[J]. Optics Letters, 2013, 38(11):1918-1920. DOI: 10.1364/OL.38.001918

    [10]

    GUO J C, YU Y S, XUE Y, et al. Compact long-period fiber gratings based on periodic microchannels[J]. IEEE Photonics Technology Letters, 2013, 25(2):111-114. DOI: 10.1109/LPT.2012.2227701

    [11]

    NOORDEGRAAF D, SCOLARI L, LAGSAARD J, et al. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers[J]. Optics Express, 2007, 15(13):7901-7912. DOI: 10.1364/OE.15.007901

    [12]

    LEMAIRE P J, ATKINS R M, MIZRAHI V, et al. High pressure H2, loading as a techniquefor achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2, doped optical fibres[J]. Electronics Letters, 1993, 29(13):1191-1193. DOI: 10.1049/el:19930796

    [13]

    NOGUCHI K, EUSUGI N, NEGISHI Y. Loss increase for optical fibers exposed to hydrogenatmosphere[J]. Journal of Lightwave Technology, 1985, 3(2):236-243. DOI: 10.1109/JLT.1985.1074175

    [14]

    ATKINS R M, LEMAIRE P J, ERDOGAN T, et al. Mechanisms of enhanced UV photosensitivity via hydrogen loading in germanosilicate glasses[J]. Electronics Letters, 1993, 29(14):1234-1235. DOI: 10.1049/el:19930825

    [15]

    LI J Zh, JIANG D Sh. Hydrogen loading and fiber Bragg grating[J]. Chinese Journal of Material Research, 2006, 20(5):517-522(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/clyjxb200605014

    [16]

    LI Y, ZHAO H, ZHU Ch, et al. Study on fiber gratings technology[J]. Laser and Infrared, 2006, 36(s1):749-754(in Chinese). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b876c33510ca7cf869a6e249ce87671b

    [17]

    BISBEE D L. Splicing silica fibers with an electric arc[J]. Applied Optics, 1976, 15(3):796-798. DOI: 10.1364/AO.15.000796

    [18]

    REGO G. Fibre optic devices produced by arc discharges[J]. Journal of Optics, 2010, 12(11):113002. DOI: 10.1088/2040-8978/12/11/113002

    [19]

    ZHENG W N, ZHU L Q, ZHUNG W, et al. Influence of electrode discharge on fiber Bragg grating spectral characteristics[J]. Chinese Journal of Lasers, 2016, 43(7):0706003(in Chinese). DOI: 10.3788/CJL

图(7)  /  表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-13
  • 修回日期:  2017-01-05
  • 发布日期:  2017-09-24

目录

    /

    返回文章
    返回