-
对于金属天线阵列超表面而言,关键是基本散射单元的选择,具体说来就是散射单元的结构、几何尺寸以及衬底材料的选择。当前人们主要使用V型、C型以及棒状天线作为基本单元,其中V型天线较为普遍。如前所述,V型天线的电磁波散射特性主要由3个自由度来决定,臂长、张角和开口方向,自由度与场的振幅相关,其散射场的表达式[15]是:
$ \begin{array}{l} {E_i} = 12({S_i} + {A_i})(y{\rm{cos}}\alpha + x{\rm{sin}}\alpha ) \pm \\ \frac{1}{2}({S_i} - {A_i})\left[ {y{\rm{cos}}\left( {2\beta - \alpha } \right) + x{\rm{sin}}\left( {2\beta - \alpha } \right)} \right] \end{array} $
(1) 式中,当i=1~4时,取为正;当i=5~8时,取为负; Si和Ai是相应轴的振幅分量,α是入射光与y轴的夹角,β是天线两轴之间的夹角。
在实际制作过程中,张角和开口方向容易偏离设计值,导致功能实现率较低。而L型天线只有两个自由度(即臂长h和宽度r,如图 1所示)影响散射特性,以x线偏光入射时,α=90°,2β-α=0°,其散射表达式简化为:
$ {E_i} = \frac{1}{2}({S_i} + {A_i})x \pm \frac{1}{2}({S_i} - {A_i})y $
(2) Figure 1. a—2-D graph of L-shaped antenna unit b—3-D map of L-shaped antenna unit c—the scattering amplitude of single L-shaped antenna unit with the change of h and r d— the scattering phase of single L-shaped antenna unit with the change of h and r
在制作过程中,不同臂长比较容易实现,因此使用L型天线作为基本电磁散射单元。
如图 1a和图 1b所示,单个散射结构单元周期长度为P=1.5mm,由上层L型金属天线(Au)和下层衬底材料组成聚丙烯组成,折射率在0.1THz时为1.48,L型天线厚度t1=300nm,大于太赫兹的趋肤深度。采用时域有限差分法(finite difference time-domain,FDTD)仿真软件进行模拟计算,在x, y, z方向设置为完全匹配层。计算了单个散射单元的电磁散射特性,即出射光的振幅和相位随不同臂长h和宽度r的变化行为,如图 1c和图 1d所示,其中入射光偏振方向为x方向线偏光。
根据图 1c和图 1d,可以获得不同(h, r)的出射光振幅和相位信息。根据设计超表面的基本原理,需要从中挑选出若干个不同(h, r)的天线来完成界面处不同相位突变的要求。为了实现2阶涡旋光束,首先挑选8个天线对2π相位突变进行覆盖,然后再挑选8个天线实现4π相位突变。
由图 1c和图 1d,首先选取4个天线出来,具体几何参量如图 2a所示。相邻天线相位差间隔为π/4,实现了一个相位差为π的覆盖。然后将A1~A4这4个天线逆时针旋转90°,形成A5~A8 4个基本天线,其相位差间隔也为π/4,而A4和A5的相位差也是π/4,从而完成另外一个π相位差覆盖。为了验证这8个天线是否实现了2π相位延迟,再次计算了它们的散射特性,如图 2b所示。可以明显看出,它们的相位延迟确实覆盖了2π,而且出射振幅比较平坦,符合超表面的设计原理。
Figure 2. a—the overlay phase array: array A(2π) and array B(2×2π) b—the normalized amplitude and phase diagram of the polarized light vertically
对于4π相位突变而言,从阵列A中挑选出了A1,A3,A5和A7 4个天线单元,其相邻的相位差为π/2,这样这4个天线完成2π相位突变,因此可以再重复使用这4个天线就可以得到另一个2π相位突变。
利用超表面天线阵列产生太赫兹涡旋光束
Generation of terahertz vortex beams base on metasurface antenna array
-
摘要: 为了研究1阶和2阶模式下的非连续性相位L型天线的超表面阵列特性,采用异常透射的散射场理论,设计了一种L型天线结构,控制天线的几何参量,选取阵列单元组,使得其覆盖相位超过2π。并根据不同的拓扑荷,设计1阶和2阶涡旋相位板,产生不同阶数涡旋光束。结果表明,用太赫兹线偏光垂直入射时,天线单元垂直偏振透射方向的模拟仿真效率达到55%左右;相位覆盖0~2π和0~4π时,其线性阵列的异常透射角不同,分别为-14.7°和-30°,其结果与广义斯涅耳定理一致。此研究对太赫兹涡旋光束的器件研究有重要的应用价值。Abstract: In order to study characteristics of metasurface array of discontinuous phase L-shaped antenna in the 1st and 2nd order modes, by using the theory of scattering field with anomalous transmission, a L-shaped antenna structure was designed. By controlling the geometric parameters of the antenna and selecting the array element group, the coverage phase exceeded 2π. According to different topological charges, the vortex phase plates of the 1st order and the 2nd order were designed to produce different order vortex beams. The simulation results show that the simulation efficiency of the vertical polarization direction of the antenna element is about 55% when the incident wave is polarized vertically. When the phase covered 0~2π and 0~4π, the anomalous transmission angles of the linear array are different, -14.7° and -30° respectively. The results are consistent with the generalized Fresnel theory. This study has the important application value in the research of terahertz vortex beam devices.
-
Key words:
- scattering /
- terahertz /
- metasurface /
- anomalous transmission /
- vortex beam
-
Figure 3. a—the 1st order transmission spectrum parallel to the polarization direction of incident light b—the 1st order transmission spectrum perpendicular to the polarization direction of incident light c— the 2nd order transmission spectrum parallel to the polarization direction of incident light d—the 2nd order transmission spectrum perpendicular to the polarization direction of incident light
Figure 4. a—vortex phase plate under topological charge l=1 b—the normalized amplitude under topological charge l=1 c—the vortex phase under topological charge l=1 d—vortex phase plate under topological charge l=2 e—the normalized amplitude under topological charge l=2 f—the vortex phase under topological charge l=2
-
[1] WANG B, ZHANG Y. Design and application of THz metamaterials and matesurfaces[J].Journal of Terahertz Science and Electronic Information Technology, 2015, 13(1):1-12(in Chinese). [2] CHEN H T, TAYLOR A J, YU N F. A review of metasurfaces:physics and applications[J]. Report on Progress in Physical Society, 2016, 79(7):076401. doi: 10.1088/0034-4885/79/7/076401 [3] HOLLOWAY C L, DIENSTFREY A, KUESTER E F, et al. A discussion on the interpretation and characterization of metafilms/metasurfaces:The two-dimensional equivalent of metamaterials[J]. Metamaterials, 2009, 3(2):100-112. [4] SKALAEV M I, SUN J B, TSUKERNIK A, et al. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode[J]. Nano Letters, 2015, 15(9):6261-6266. doi: 10.1021/acs.nanolett.5b02926 [5] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337. doi: 10.1126/science.1210713 [6] QIN F, DING L, ZHANG L, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1):1501168. [7] MO W C, WEI X L, WANG K J, et al. Ultrathin flexible terahertz polarization converter based on metasurfaces[J]. Optics Express, 2016, 24(12):13622-13627. [8] HU D, WANG X K, FENG S F, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2):186-191. [9] GENEVET P, YU N F, AIETA F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Le-tters, 2012, 100(1):1-11. [10] HE J W, WANG X K, HU D, et al. Generation and evolution of the terahertz vortex beam[J]. Optics Express, 2013, 21(17):20230-20239. doi: 10.1364/OE.21.020230 [11] YANG Y M, WANG W Y, MOITRA P, et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation[J]. Nano Letters, 2014, 14(3):1394-1399. doi: 10.1021/nl4044482 [12] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and transformation of Laguerre Gaussian laser modes[J]. Physical Review, 1992, A45(11):8185-8189. [13] BLACK L J, WANG Y D, GROOT C H, et al. Optimal polarization conversion in coupled dimer plasmonic nanoantennas for metasurfaces[J]. Acs Nano, 2014, 8(6):6390-6399. doi: 10.1021/nn501889s [14] WANG W, GUO Z Y, LI R Z, et al. Plasmonics metalens independent from the incident polarizations[J]. Optics Express, 2015, 23(13):16782-16791. doi: 10.1364/OE.23.016782 [15] YU N F, GENEVET P, AIETA F, et al. Flat optics:Controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3):4700423. doi: 10.1109/JSTQE.2013.2241399 [16] WEI Y, ZHU Y Y. Analysis of phase change of Laguerre-Gaussian vortex beam during propagation[J]. Laser Technology, 2015, 39(5):723-726(in Chinese). [17] ZHANG Y X, XU J C, SI C F, et al. Effect of turbulent tilt, coma and astigmatism on orbital angular momentum state of laser beam[J]. Laser Technology, 2010, 34(6):747-749(in Chinese). [18] MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844):313-316. doi: 10.1038/35085529