-
在建立激光辐照单晶硅的物理模型时,假设激光垂直辐照在单晶硅表面,并且入射光束的横截面强度按高斯型分布,建立了2维轴对称有限元模型对激光辐照过程进行数值模拟,如图 1所示。
图 1中, z为对称轴;l为单晶硅材料的半径,取为3mm;h为单晶硅的厚度,取为1mm;O为靶材的中心点;r为激光光斑半径;w为激光光斑半径。为了简化计算,做了一些假设:(1)材料是各向同性的;(2)激光作用过程中未出现气化现象;(3)不考虑材料液化后的流动,且液相区域仍作为热传导处理。
本文中选用的是Nd: YAG脉冲激光器,其激光波长为1064nm,光子能量为hν=1.17eV,其中ν表示频率,单晶硅的禁带宽度E=1.12eV,当满足hν>E时,初始吸收主要为本征吸收,产生大量自由载流子,随后自由载流子在吸收能量的同时向周围扩散,通过和晶格的耦合将能量传递给晶格,这种能量的沉积致使材料升温,进而产生熔融和气化。
对于脉宽为毫秒量级及纳秒量级的激光与单晶硅材料作用的2维轴对称模型中,热传导方程[10]为:
$ \begin{array}{l} \rho c\frac{{\partial T(r, z, t)}}{{\partial t}} = \frac{1}{r}\;\frac{\partial }{{\partial t}}\left[ {r\kappa \frac{{\partial T(r, z, t)}}{{\partial t}}} \right] + \\ \;\;\;\;\;\;\frac{\partial }{{\partial z}}\left[ {\kappa \frac{{\partial T(r, z, t)}}{{\partial z}}} \right] + Q(r, z, t) \end{array} $
(1) 式中,ρ为材料密度,c为比热容,T(r, z, t)表示瞬时温度,κ为热导率,t为时间; 一般来讲,材料的物理参量(如比热容、热传导率、表面反射率、吸收系数)随温度变化而变化,Q(r, z, t)表示内热源,是空间和时间的相关函数。
根据高斯光束的空间分布[10]可以表示为:
$ I\left( {r, z} \right) = \frac{{2{I_0}}}{{{\rm{ \mathsf{ π} }}{w^2}}}{\rm{exp}}\left( {\frac{{ - 2{r^2}}}{{{w^2}}}} \right) $
(2) 式中,I0为峰值功率。
用τ代表脉宽,激光随时间分布可用函数g(t)[10]表示:
$ g\left( t \right) = \left\{ \begin{array}{l} 1, \left( {0<t \le \tau } \right)\\ 0, \left( {t﹥\tau } \right) \end{array} \right. $
(3) 热源Q[10]可以写为:
$ Q\left( {r, z, t} \right) = \left( {1 - R} \right)\alpha I\left( {r, z} \right)g\left( t \right){\rm{exp}}( - \alpha z){\rm{ }} $
(4) 式中, R和α分别是波长为1064nm对应的反射率和吸收系数,它们都是与温度相关的函数。
边界条件为:
$ \begin{array}{l} - \kappa \frac{{\partial T(r, z, t)}}{{\partial r}}\left| {_{r = 0}} \right. = - \kappa \frac{{\partial T(r, z, t)}}{{\partial r}}\left| {_{r = l}} \right. = \\ \;\;\;\;\;\; - \kappa \frac{{\partial T(r, z, t)}}{{\partial r}}\left| {_{z = h}} \right. = 0 \end{array} $
(5) 初始条件为:
$ T\left( {r, z, t} \right)\left| {_{t = 0}} \right. = {T_0} $
(6) 初始温度为:
$ {T_0} = 300{\rm{K}} $
(7) 式中,l和h分别表示硅片的半径和厚度。毫秒激光的脉宽为1ms,纳秒激光的脉宽为10ns。单晶硅的熔点是1685K,沸点是3538K,熔化潜热是1800J/g,其它热物理参量如表 1所示。
parameter solid liquid ρ/(kg·m-3) 2330-2.19×10-2T 2540-2.19× 10-2T- 1.21×10-5T2 c/(J·kg-1· K-1) 352.43+1.78T- 2.21×10-3T2+1.3×10-6T3- 2.83×10-10T4 1021.84 κ/(W·m-1· K-1) 299/(T-99) 0.62 R(1064nm) 0.33 0.72 α/m-1 1023×(T/T0)4 8.6×107
组合激光对单晶硅热作用的数值分析
Numerical analysis of thermal effect of the combined laser on single crystal silicon
-
摘要: 为了提高激光加工中单晶硅材料对激光能量的耦合效率,采用一个短脉冲激光和一个长脉冲激光形成组合激光辐照单晶硅,使用COMSOL软件对该过程进行模拟,得到了组合激光长短脉冲间的延迟时间和长脉冲激光能量密度的变化对作用效果的影响,并与总能量相等的毫秒激光单独作用的效果进行比较;实验测量得到的不同能量密度的激光作用单晶硅后损伤形貌,与数值计算结果的趋势吻合。结果表明,组合激光能提高材料对激光的耦合效率;不同的延迟时间会影响组合激光的作用效果,最佳延迟时间为0.1ms;组合激光中毫秒激光能量密度占比较低时,作用效能较明显,随着毫秒激光能量密度占比的提高,对作用效果的提升相对变缓。该研究结果可以为组合激光的应用提供理论和实验依据。Abstract: In order to improve coupling efficiency of laser energy of monocrystalline silicon in laser processing, a short laser pulse and a long laser pulse were used to form a combined pulse to irradiate the monocrystalline silicon. The process was simulated by using COMSOL software. The influences of the delay time of combination laser and the laser energy density of long pulse on the process effect were obtained. The effect was compared with that of individual action millisecond laser under the equal total energy. The measured damage morphologies of monocrystalline silicon irradiated by lasers with different power intensities were in agreement with the trend of numerical results. The results show that the combined laser can improve the coupling efficiency of laser. The different delay time would affect the process effect of the combined laser. The optimum delay time is 0.1ms. When the ratio of the millisecond laser energy density in the combined laser is relatively low, the effect is obvious. With the increase of the ratio of the millisecond laser energy density, the enhancement of the effect is relatively slow. The research results can provide theoretical and experimental basis for the application of combined laser.
-
Key words:
- laser technique /
- the combined laser /
- single crystal silicon /
- laser energy /
- the optimum delay time
-
parameter solid liquid ρ/(kg·m-3) 2330-2.19×10-2T 2540-2.19× 10-2T- 1.21×10-5T2 c/(J·kg-1· K-1) 352.43+1.78T- 2.21×10-3T2+1.3×10-6T3- 2.83×10-10T4 1021.84 κ/(W·m-1· K-1) 299/(T-99) 0.62 R(1064nm) 0.33 0.72 α/m-1 1023×(T/T0)4 8.6×107 -
[1] PAN Y, ZHANG H, CHEN J, et al. Millisecond laser machining of transparent materials assisted by nanosecond laser[J]. Optics Express, 2015, 23(2):765-775. doi: 10.1364/OE.23.000765 [2] LI L Q, CHEN Y B, TAO W. Reserch on dual-beam welding characteristics of aluminum alloy[J]. Chinese Journal of Lasers, 2008, 35(11):1783-1788(in Chinese) doi: 10.3788/JCL [3] FORSMAN A C, BANKS P S, PERRY M D, et al. Doublepulse machining as a techniques for the enhancement of material removal rates in laser machining of metals[J]. Journal of Appllied Physics, 2005, 98(3):033302. doi: 10.1063/1.1996834 [4] WANG X D, MICHALOWSKI A, WALTER D, et al. Laser drilling of stainless steel with nanosecond double-pulse[J]. Optics & Laser Technology, 2009, 41(2):148-153. [5] LEHANE C, KWOK H S. Enhanced drilling using a dual-pulse Nd:YAG laser[J]. Applied Physics, 2001, A73(1):45-48. [6] JIAO L G, ZHAO G M, CHEN M S. Simulation of temperature rise of 45# steel target irradiated by combined laser in the two dimensional cases[J]. Infrared and Laser Engineering, 2010, 39(1):42-46(in Chinese). [7] JIAO L G, ZHAO G M, CHEN M S. Investigation on the irradiation effects of Q235 steel targets by combined laser[J]. Infrared and Laser Engineering, 2011, 40(5):848-852(in Chinese). [8] XIAO Q, HE H X, XIA H J. Stress simulation on aluminium alloy irradiated by long pulsed laser and continuous wave laser[J].Chinese Journal of Lasers, 2012, 39(11):1103002(in Chinese). doi: 10.3788/CJL [9] XIAO Q, HE H X, XIA H J.Temprature flied simulation on aluminium alloy irradiated by long pulsed laser and continuous wave laser[J].Chinese Journal of Lasers, 2013, 40(8):0803009(in Chinese). doi: 10.3788/CJL [10] WANG X, QIN Y, WANG B, et al. Numerical and experimental study of the thermal stress of silicon induced by a millisecond laser[J]. Applied Optics, 2011, 50(21):3725-3732. doi: 10.1364/AO.50.003725 [11] LIM D J, KI H, MAZUMDER J. Mass removal modes in the laser ablation of silicon by a Q-switched diode-pumped solid-state laser (DPSSL)[J]. Journal of Physics, 2006, D39(12):2624-2635. [12] MASOLIN A, BOUCHARD P O, MARTINI R, et al. Thermo-mechanical and fracture properties in single-crystal silicon[J]. Journal of Materials Science, 2013, 48(3):979-988. doi: 10.1007/s10853-012-6713-7 [13] TAO S, WU B X, ZHOU Y, et al. Thermal modeling and experimental study of infrared nanosecond laser ablation of silicon[J]. Journal of Applied Physics, 2009, 106(12):123507. doi: 10.1063/1.3271413 [14] YAMAGUCHI K, ITAGAKI K. Measurement of high temperature heat content of silicon by drop calorimetry[J]. Journal of Thermal Analysis and Calorimetry, 2002, 69(3):1059-1066. doi: 10.1023/A:1020609517891 [15] WANG X. The thermal and mechanical effects during pulsed laser interaction with semiconductor materials and the application of laser scribing on the CIGS thin film solar cell[D].Nanjing: Nanjing University of Science and Technology, 2013: 49-50(in Chinese).