高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏置信号和噪声对单模激光随机共振的影响

叶庆

引用本文:
Citation:

偏置信号和噪声对单模激光随机共振的影响

    作者简介: 叶庆(1982-), 女, 硕士, 实验师, 主要研究方向为激光物理和随机动力学。E-mail:yeq97@wtu.edu.cn.
  • 基金项目:

    国家自然科学基金面上资助项目 11275157

  • 中图分类号: TN241

Influence of biased signal and noise on characteristics of stochastic resonance in single mode laser

  • CLC number: TN241

  • 摘要: 为了研究激光系统的性质,采用色抽运噪声和实虚部关联的量子噪声驱动的单模激光损失模型,用线性化近似方法,对单模激光系统的输出光强信噪比进行了理论分析;并具体分析了调制信号振幅、低频调制信号频率、高频载波信号频率、量子噪声强度、抽运噪声强度以及量子噪声实部、虚部间的关联系数对系统随机共振的影响。结果表明,信噪比随激光系统净增益系数存在随机共振现象。此结果对优化激光动力学提供了理论依据。
  • Figure 1.  Relationship between R and a0 with different B

    Figure 2.  Relationship between R and a0 with different Ω

    Figure 3.  Relationship between R and a0 with different ω

    Figure 4.  Relationship between R and a0 with different P

    Figure 5.  Relationship between R and a0 with different Q

  • [1]

    LIANG Y L, YANG S H, ZHAO Ch M, et al. Research of intensity noise suppression in laser diode-pump Nd:YAG lasers[J]. Laser Technology, 2016, 40(1): 113-117(in Chinese).
    [2]

    BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics, 1981, A14(11): L453-L457. 
    [3]

    ROZENFELD R, FREUND J A, NEIMAN A, et al. Noise-induced phase synchronization enhanced by dichotomic noise[J]. Physical Review, 2001, E64(5): 051107-051114. 
    [4]

    LUO X Q, ZHU Sh Q. Stochastic resonance driven by two different kinds of colored noise in a bistable system[J]. Physical Review, 2003, E67(2):021104-021117. 
    [5]

    TESSONE C J, WIO H S, HANGGI P. Stochastic resonance driven by time modulated correlated white noise sources[J]. Physical Review, 2000, E62(4):4623-4632. 
    [6]

    LUO X Q, ZHU Sh Q, CHEN X F. Effects of colored noise on the intensity and phase in a laser system[J]. Physics Letters, 2001, A287(1/2):111-119.
    [7]

    CHENG Q H, CAO L, WU D J, et al. Analyses of valid range for the linear approximation in a single-mode laser[J]. Acta Photonica Sinica, 2004, 33(5):517-520(in Chinese).
    [8]

    YE Q, LI J X, YANG M, et al. Phenomenon of resonance in a two-mode laser with an input additive signal[J]. Communications in Theoretical Physics, 2010, 54(5):875-878. doi: 10.1088/0253-6102/54/5/20
    [9]

    ZHANG L Y, JIN G X, WANG Zh Y, et al. Energetic stochastic resonance in gain-noise model for single-mode laser[J]. Acta Physica Sinica, 2015, 64(3):034210(in Chinese). 
    [10]

    LUO X Q. Correlated colored noises in a nonlinear system[J]. Acta Physica Sinica, 2002, 51(5):977-981(in Chinese). 
    [11]

    JIN Y F, XU W, LI W, et al. Stochastic resonance for periodically modulated noise in a linear system[J]. Acta Physica Sinica, 2005, 54(6):2562-2567(in Chinese).
    [12]

    ZHAO Y, GAO Ch Q, CAO Y L, et al. Study on laser-diode-pumped 1319nm single frequency laser tuning and noise suppression[J]. Laser Technology, 2004, 28(5): 466-468(in Chinese). 
    [13]

    BARZYKIN A V, SEKI K, SHIBATA F. Periodically driven linear system with multiplicative colored noise[J]. Physics Review, 1998, E57(6):6555-6563.
    [14]

    CHENG Q H, CAO L, WU D J, et al. Stochastic resonance of the signal-to-noise ratio versus the net gain in a single-model laser system[J]. Acta Photonica Sinica, 2004, 33(8):901-904(in Chinese). 
    [15]

    XU D H, WU Z X, CAO L, et al. Influence of the input signal and noise on characteristic of stochastic resonance in a single mode laser system[J]. Acta Photonica Sinica, 2005, 34(9):1311-1315(in Chinese).
    [16]

    YE Q. Evolution of the intensity correlation function in a single-mode laser with a biased amplitude modulation[J]. Acta Photonica Sinica, 2014, 43(11):11140011(in Chinese). 
    [17]

    YE Q, ZHANG J L. Intensity fluctuation and power spectrum in a single-mode laser[J]. Laser & Infrared, 2016, 46(5):565-569(in Chinese).
    [18]

    WANG F, GUI D, HE L P. Steady-state mean normalized intensity fluctuation of a single mode laser driven by color-pump noises modulated by a periodic signal[J]. Journal of Hubei Polytechnic University, 2015, 31(1):47-50(in Chinese). 
    [19]

    KE Sh Zh, CAO L, WU D J, et al. General laser intensity Langevin equation in a single-mode laser model[J]. Chinese Physics Letters, 2001, 18(3):370-372. doi: 10.1088/0256-307X/18/3/320
  • [1] 付华代巍 . 随机共振瓦斯微弱信号检测方法研究. 激光技术, 2016, 40(2): 213-218. doi: 10.7510/jgjs.issn.1001-3806.2016.02.013
    [2] 赵艳沈中华陆健倪晓武 . 圆柱型涂层/基底系统中的激光超声表面波. 激光技术, 2006, 30(6): 647-649,666.
    [3] 周素云刘三秋陶向阳 . 激光等离子体中密度孤波和自生磁场的数值模拟. 激光技术, 2007, 31(1): 8-11.
    [4] 徐荣青崔一平赵瑞陆建倪晓武 . 有机玻璃中冲击波衰减特性的研究. 激光技术, 2008, 32(3): 225-227,243.
    [5] 唐芳牛燕雄张雏陈燕姜楠杨海林 . 激光辐照皮肤组织的热效应解析计算研究. 激光技术, 2008, 32(5): 542-544.
    [6] 占剑杨明江 . 脉冲YAG激光诱导放电击穿电压研究. 激光技术, 2009, 33(2): 138-140.
    [7] 史彭辛宇李隆陈文白冰 . 矩形截面Nd:GGG热容激光器热分析. 激光技术, 2011, 35(3): 305-307,333. doi: 10.3969/j.issn.1001-3806.2011.03.005
    [8] 王纪俊沈中华倪晓武许伯强关建飞陆建 . 透明薄膜/基底系统激光超声波的有限元数值研究. 激光技术, 2006, 30(2): 177-180.
    [9] 杨明惠金琪刘劲松王可嘉杨振刚 . 飞秒激光结合啁啾太赫兹脉冲控制CO分子取向. 激光技术, 2015, 39(6): 735-740. doi: 10.7510/jgjs.issn.1001-3806.2015.06.001
    [10] 邹晶赵圣之杨克建李桂秋 . CCD测量LD端面抽运Nd:GdVO4固体激光器热焦距. 激光技术, 2006, 30(4): 422-424,428.
    [11] 陈子琪王新兵左都罗 . CO2激光诱导液滴射流等离子体的实验研究. 激光技术, 2016, 40(6): 888-891. doi: 10.7510/jgjs.issn.1001-3806.2016.06.023
    [12] 栗兴良牛春晖马牧燕吕勇 . 单脉冲激光损伤CCD探测器的有限元仿真. 激光技术, 2016, 40(5): 730-733. doi: 10.7510/jgjs.issn.1001-3806.2016.05.023
    [13] 张碧津汪洋宋海英刘海云刘世炳 . 超强激光驱动薄膜靶谐波辐射的模拟研究. 激光技术, 2018, 42(1): 113-116. doi: 10.7510/jgjs.issn.1001-3806.2018.01.022
    [14] 姜珊珊蔡继兴金光勇苑博识 . 毫秒/纳秒激光致碳纤维环氧树脂损伤形貌研究. 激光技术, 2018, 42(6): 775-779. doi: 10.7510/jgjs.issn.1001-3806.2018.06.009
    [15] 赵洋金光勇李明欣张巍王頔 . 毫秒脉冲激光损伤CCD探测器的实验研究. 激光技术, 2017, 41(5): 632-636. doi: 10.7510/jgjs.issn.1001-3806.2017.05.003
    [16] 张梁倪晓武陆健 . 毫秒激光致固体靶材熔融喷溅的比较实验研究. 激光技术, 2018, 42(4): 446-450. doi: 10.7510/jgjs.issn.1001-3806.2018.04.003
    [17] 周素云袁孝程坤 . 激光驱动的1维准等熵压缩数值计算. 激光技术, 2010, 34(2): 178-180,217. doi: 10.3969/j.issn.1001-3806.2010.02.010
    [18] 杨建强 . 四频环形激光器兰姆系数的推导. 激光技术, 2008, 32(4): 383-386.
    [19] 张永强王贵兵唐小松 . 复合材料激光辐照过程中的吸收特性分析. 激光技术, 2009, 33(6): 590-592,596. doi: 10.3969/j.issn.1001-3806.2009.06.009
    [20] 朱金荣杨雁南杨波沈中华陆建倪晓武 . 用于激光对靶冲量测试的悬摆原理与应用. 激光技术, 2007, 31(3): 257-261.
  • 加载中
图(5)
计量
  • 文章访问数:  3574
  • HTML全文浏览量:  1932
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-25
  • 录用日期:  2016-09-13
  • 刊出日期:  2017-07-25

偏置信号和噪声对单模激光随机共振的影响

    作者简介: 叶庆(1982-), 女, 硕士, 实验师, 主要研究方向为激光物理和随机动力学。E-mail:yeq97@wtu.edu.cn
  • 武汉纺织大学 电子与电气工程学院, 武汉 430073
基金项目:  国家自然科学基金面上资助项目 11275157

摘要: 为了研究激光系统的性质,采用色抽运噪声和实虚部关联的量子噪声驱动的单模激光损失模型,用线性化近似方法,对单模激光系统的输出光强信噪比进行了理论分析;并具体分析了调制信号振幅、低频调制信号频率、高频载波信号频率、量子噪声强度、抽运噪声强度以及量子噪声实部、虚部间的关联系数对系统随机共振的影响。结果表明,信噪比随激光系统净增益系数存在随机共振现象。此结果对优化激光动力学提供了理论依据。

English Abstract

    • 随机共振现象是噪声和非线性动力学相互作用出现的一种有趣的现象。1981年被BENZI等人首次发现,此后在很多领域成为人们广泛研究的课题,在实验和理论研究上都取得了很大的进展。但是现有的研究成果大多受限于单一频率的周期驱动信号。而在实践应用中,需要使载波振幅按照调制信号的改变而实行调制,使其保持着高频载波的频率特性, 需要将此调制信号加载到激光源上,使其作为传递信息的工具。这对激光通讯和提高激光的效率有重要的作用。通常,传统的随机共振一般由信噪比与噪声强度的关系来体现。1998年,BARZYKIN等人提出可以用信噪比与噪声自相关时间的关系来体现。CHENG等人用信噪比与净增益系数之间的变化关系也阐明了这点。后来的研究说明了随机共振可由信噪比与系统中其它参量之间的关系来体现。作者用线性化近似方法计算了在偏置调幅信号下,色抽运噪声和实部、虚部间关联的量子噪声驱动的单模激光损失模型的输出光强信噪比,发现信噪比与系统的净增益系数之间存在共振现象。此外,还讨论了输入信号和噪声在量子噪声实部虚部间弱关联和强关联时对随机共振的影响,为优化激光系统的动力学性质提供依据。

    • 单模激光损失模型输入偏置调幅波后的光强方程为:

      $ \begin{matrix} \frac{\text{d}I}{\text{d}t'}=2{{a}_{0}}I-2A{{I}^{2}}+Q\text{ }\left( 1-|\lambda | \right)+ \\ 2I{{p}_{\text{r}}}(t')+2\sqrt{I}{{\varepsilon }_{\text{r}}}(t')+ \\ B\left[ 1-D\cos \left( \mathit{\Omega }t' \right) \right]cos(\omega t') \\ \end{matrix} $

      (1)

      抽运噪声p(t′)和量子噪声ε(t′)的统计性质为:

      $ \left\{ \begin{align} &\left\langle {{p}_{\text{r}}}(t') \right\rangle =\left\langle {{\varepsilon }_{\text{r}}}\left( t' \right) \right\rangle =0 \\ &\left\langle {{p}_{\text{r}}}\text{ }(t)\text{ }{{p}_{\text{r}}}(t') \right\rangle =\frac{P}{2\tau }\exp \left( \frac{\left| t-t' \right|}{\tau } \right) \\ &\left\langle {{\varepsilon }_{\text{r}}}(t){{\varepsilon }_{\text{r}}}\left( t' \right) \right\rangle =Q\text{ }\left( 1+\left| \lambda \right| \right)\delta (t-t') \\ &\left\langle {{p}_{\text{r}}}\left( t \right){{\varepsilon }_{\text{e}}}\left( t' \right) \right\rangle =\left\langle {{p}_{\text{r}}}(t'){{\varepsilon }_{\text{r}}}(t) \right\rangle =0 \\ \end{align} \right. $

      (2)

      式中,a0为净增益系数, A为自饱和系数; I为光强, B为载波信号振幅,Ω为低频调制信号频率;pr(t′)为抽运噪声实部, εr(t′)为位相锁定后的量子噪声;PQ是抽运噪声强度和量子噪声强度, τ为抽运噪声自关联时间, ω为高频载波信号频率, D为调制信号振幅;λ为量子噪声实部、虚部之间的关联系数,其取值范围为λ≤1。本文中所讨论的物理量,均无量纲。

      I=I0+δ(t′),δ(t′)为微小扰动项,I0为定态光强。在I0=a0/A附近, 对(1)式线性化处理得:

      $ \begin{matrix} \text{d}\delta (t')/\text{d}t'=-\gamma \delta \left( t' \right)+Q\text{ }\left( 1-\left| \lambda \right| \right)+2{{I}_{0}}{{p}_{\text{r}}}(t')+ \\ 2{\sqrt {{I_0}} }{{\varepsilon }_{\text{r}}}\left( t' \right)+B\left[ 1-D\cos \left( \mathit{\Omega }t' \right) \right]\cos(\omega t') \\ \end{matrix} $

      (3)

      式中, γ=2a0

      定义归一化稳态平均光强关联函数:

      $ C(t) = \mathop {\lim }\limits_{t' \to \infty } {\mkern 1mu} \frac{{\overline {\left\langle {I{\rm{ }}\left( {t'} \right){\rm{ }}I{\rm{ }}\left( {t' + t} \right)} \right\rangle } - \overline {{{\left\langle {I{\rm{ }}\left( {t'} \right)} \right\rangle }^2}} }}{{\overline {{{\left\langle {I{\rm{ }}\left( {t'} \right)} \right\rangle }^2}} }} $

      (4)

      进行傅里叶变换, 得出光强的功率谱:

      $ S\text{ }\left( \omega ' \right)={{S}_{1}}\left( \omega ' \right)+{{S}_{2}}\left( \omega ' \right) $

      式中, S1(ω′)为输出信号功率谱, S2(ω′)为输出噪声功率谱。输出信号功率谱中有3个信号频率,输出总信号功率为:

      $ {{P}_{S}}=\int_{0}^{\infty }{{{S}_{1}}(\omega ')\text{ d}\omega '} $

      (5)

      信噪比的定义为输出信号功率与3个信号频率处单位噪声功率之和的比值(只取正ω的谱):

      $ R=\frac{{{P}_{S}}}{{{S}_{2}}\left( \omega \right)+{{S}_{2}}\left( \omega +\mathit{\Omega } \right)+{{S}_{2}}(\omega -\mathit{\Omega })} $

      (6)

      式中,

      $ \begin{matrix} {{P}_{S}}=\frac{{{\text{ }\!\!\pi\!\!\text{ }}^{2}}{{B}^{2}}{{D}^{2}}}{4{{I}_{0}}^{2}{{\left[ {{\gamma }^{2}}+{{\left( \mathit{\Omega }+\omega \right)}^{2}} \right]}^{2}}}\left[ \frac{{{\gamma }^{2}}}{\mathit{\Omega }+\omega }+\left( \mathit{\Omega }+\omega \right) \right]+ \\ \frac{{{\text{ }\!\!\pi\!\!\text{ }}^{2}}{{B}^{2}}{{D}^{2}}}{4{{I}_{0}}^{2}{{\left[ {{\gamma }^{2}}+{{\left( \mathit{\Omega }-\omega \right)}^{2}} \right]}^{2}}}\left[ \frac{{{\gamma }^{2}}}{\mathit{\Omega }-\omega }+\left( \mathit{\Omega }-\omega \right) \right]+\frac{{{\text{ }\!\!\pi\!\!\text{ }}^{2}}{{B}^{2}}}{{{I}_{0}}^{2}\Omega ({{\gamma }^{2}}+{{\omega }^{2}})} \\ \end{matrix} $

      (7)

      $ \left\{ \begin{align} &{{S}_{2}}\left( \omega \right)=\frac{2\text{ }\!\!\pi\!\!\text{ }{{Q}^{2}}{{\left( 1-\left| \lambda \right| \right)}^{2}}}{{{I}_{0}}^{2}{{\gamma }^{2}}}+\frac{4P{{\tau }^{2}}}{({{\gamma }^{2}}{{\tau }^{2}}-1)({{\omega }^{2}}{{\tau }^{2}}+1)}+ \\ &\frac{4}{{{\gamma }^{2}}+{{\omega }^{2}}}\left[ \frac{Q\text{ }\left( 1+\left| \lambda \right| \right)}{{{I}_{0}}}-\frac{P}{{{\gamma }^{2}}{{\tau }^{2}}-1} \right] \\ &{{S}_{2}}\left( \omega +\mathit{\Omega } \right)=\frac{2\text{ }\!\!\pi\!\!\text{ }{{Q}^{2}}{{\left( 1-\left| \lambda \right| \right)}^{2}}}{{{I}_{0}}^{2}{{\gamma }^{2}}}+\frac{4P{{\tau }^{2}}}{({{\gamma }^{2}}{{\tau }^{2}}-1)\left[ {{\left( \omega +\mathit{\Omega } \right)}^{2}}{{\tau }^{2}}+1 \right]}+ \\ &\frac{4}{{{\gamma }^{2}}+{{\left( \omega +\mathit{\Omega } \right)}^{2}}}\left[ \frac{Q\left( 1+\left| \lambda \right| \right)}{{{I}_{0}}}-\frac{P}{{{\gamma }^{2}}{{\tau }^{2}}-1} \right] \\ &{{S}_{2}}\left( \omega -\mathit{\Omega } \right)=\frac{2\text{ }\!\!\pi\!\!\text{ }{{Q}^{2}}{{\left( 1-\left| \lambda \right| \right)}^{2}}}{{{I}_{0}}^{2}{{\gamma }^{2}}}+\frac{4P{{\tau }^{2}}}{({{\gamma }^{2}}{{\tau }^{2}}-1)\left[ {{\left( \omega -\mathit{\Omega } \right)}^{2}}{{\tau }^{2}}+1 \right]}+ \\ &\frac{4}{{{\gamma }^{2}}+{{\left( \omega -\mathit{\Omega } \right)}^{2}}}\left[ \frac{Q\text{ }\left( 1+\left| \lambda \right| \right)}{{{I}_{0}}}-\frac{P}{{{\gamma }^{2}}{{\tau }^{2}}-1} \right] \\ \end{align} \right. $

      (8)
    • 由(6)式得出的信噪比R和净增益系数a0的关系曲线出现了一个极大值,也就是单峰随机共振现象。

    • 图 1为(6)式中以偏置信号振幅B为参量画出的R-a0曲线。参量为A=1, P=0.001, Q=0.01, τ=0.02, Ω=0.01, ω=100, D=1.5。由于(1)式的导出利用了统一色噪声近似,故所取的抽运噪声色关联时间$ \tau \ll 1 $。在图 1a中可以看到,当λ=0.1(弱关联)时,信噪比Ra0的变化出现一个共振峰,且随着偏置信号振幅B的线性增加,R的峰值也几乎线性增加,说明输入的偏置信号振幅越强,随机共振越强。从图 1b可以看出,在λ=0.9(强关联)的情况下,曲线R-a0也出现一个共振峰,随着输入信号振幅B的线性增加,峰值也几乎线性增加,并且峰值比弱关联时更大,同时,共振峰变得更加尖锐,位置离阈值更近。表明在激光系统中量子噪声实部、虚部间关联强度越强,输入信号振幅越大,系统的随机共振越明显。

      Figure 1.  Relationship between R and a0 with different B

      以低频调制信号频率Ω为参量时,由(6)式画出的R-a0曲线, 如图 2所示。参量为A=1, P=0.001, Q=0.01, τ=0.02, B=1, ω=100, D=1.5。由图 2a中可以看到,在λ=0.1(弱关联)时,信噪比Ra0的变化出现一个共振峰,且随Ω的线性减小,R的峰值出现非线性增加,表明低频调制信号频率越小,对随机共振影响越大。从图 2b可以看出,在λ=0.9(强关联)情况下,信噪比Ra0的变化也出现一个共振峰,且峰值较弱关联时增大,表明量子噪声实部、虚部间的关联越强,共振峰越尖锐,对随机共振影响越大。

      Figure 2.  Relationship between R and a0 with different Ω

      以高频载波信号频率ω为参量时,由(6)式画出的R-a0曲线如图 3所示。参量为A=1, P=0.001, Q=0.01, τ=0.02, B=1, Ω=0.01, D=1.5。由图 3a中可以看到,在λ=0.1(弱关联)时,信噪比Ra0的变化出现一个共振峰,且当ω线性减小时,R的峰值出现非线性增加,峰值位置左移,表明高频载波信号频率稍小时,随机共振越强。从图 3b可以看出,在λ=0.9(强关联)情况下,信噪比Ra0的变化也出现一个共振峰,且峰值较弱关联时增大,表明量子噪声实虚部间的关联越强,共振峰越高,越尖锐,越接近阈值,对随机共振影响越大。

      Figure 3.  Relationship between R and a0 with different ω

    • 以抽运噪声强度P为参量时,由(6)式画出的R-a0曲线如图 4所示。参量为A=1, Q=0.01, τ=0.02, Ω=0.01, ω=100,B=1, D=1.5。由图 4a中可知,Ra0的变化出现峰值,当λ=0.1(弱关联)、且接近阈值时,曲线R-a0基本不随P的变化而变化;稍远离阈值时,峰值随着P的线性减小而几乎线性增加。当λ=0.9(强关联)时,如图 4b所示,曲线R-a0几乎不随P的变化而变化,但当抽运噪声强度相同时(P=0.001),图 4b中比图 4a中出现的共振峰值要大,峰更尖锐。由图说明,量子噪声实部、虚部间强关联情况下,抽运噪声强度的变化对随机共振的影响很小;同时,量子噪声实部、虚部间的关联越强,随机共振现象越明显。

      Figure 4.  Relationship between R and a0 with different P

      以量子噪声强度Q为参量,由(6)式画出R-a0的曲线如图 5所示。参量为A=1, P=0.001, τ=0.02, Ω=0.01, ω=100,B=1, D=1.5。由图 5a中可知,当λ=0.1(弱关联)时,曲线R-a0出现一个共振峰,当Q线性减小时,R的峰值出现非线性增加,且共振峰位置稍稍左移,表明量子噪声强度越小,随机共振越强。从图 5b可以看出,在λ=0.9(强关联)情况下,信噪比Ra0的变化也出现一个共振峰,当两图取相同的量子噪声强度时,量子噪声实部、虚部间的关联越强,随机共振峰越高,越尖锐,越接近阈值。图 5表明,量子噪声实部、虚部间关联越强,量子噪声强度越小,随机共振现象越明显。

      Figure 5.  Relationship between R and a0 with different Q

    • (1) 当调制信号振幅增大、低频调制信号频率减小、高频载波信号频率较小以及量子噪声强度、抽运噪声强度均减小时,系统的随机共振加强。

      (2) 量子噪声实部、虚部间关联越强,随机共振现象越明显,峰值越大。

      (3) 强关联下(λ=0.9),当激光系统的参量确定时,抽运噪声强度对随机共振现象几乎不影响。

      (4) 利用类似的研究发现,输入偏置信号后,计算得出的信噪比与信号中高频载波信号频率也会出现共振峰,即随机共振现象。

      参考文献[15]中研究了输入单一频率周期信号时信号和噪声对随机共振现象的影响,发现当量子噪声实部、虚部之间弱关联时(λ=0)出现较明显的共振峰,这与本文中研究的偏置信号输入弱关联时(λ=0),随机共振峰小且不明显的研究情况刚好相反。因为参考文献[15]中得到的信噪比R只与(1+|λ|)这一项有关,但本文中, 而除此项外, 还与(1-|λ|)3有关。对于量子噪声强度和抽运噪声强度对随机共振的影响而言,两者结论一致。

参考文献 (19)

目录

    /

    返回文章
    返回