-
单模激光损失模型输入偏置调幅波后的光强方程为:
$ \begin{matrix} \frac{\text{d}I}{\text{d}t'}=2{{a}_{0}}I-2A{{I}^{2}}+Q\text{ }\left( 1-|\lambda | \right)+ \\ 2I{{p}_{\text{r}}}(t')+2\sqrt{I}{{\varepsilon }_{\text{r}}}(t')+ \\ B\left[ 1-D\cos \left( \mathit{\Omega }t' \right) \right]cos(\omega t') \\ \end{matrix} $
(1) 抽运噪声p(t′)和量子噪声ε(t′)的统计性质为:
$ \left\{ \begin{align} &\left\langle {{p}_{\text{r}}}(t') \right\rangle =\left\langle {{\varepsilon }_{\text{r}}}\left( t' \right) \right\rangle =0 \\ &\left\langle {{p}_{\text{r}}}\text{ }(t)\text{ }{{p}_{\text{r}}}(t') \right\rangle =\frac{P}{2\tau }\exp \left( \frac{\left| t-t' \right|}{\tau } \right) \\ &\left\langle {{\varepsilon }_{\text{r}}}(t){{\varepsilon }_{\text{r}}}\left( t' \right) \right\rangle =Q\text{ }\left( 1+\left| \lambda \right| \right)\delta (t-t') \\ &\left\langle {{p}_{\text{r}}}\left( t \right){{\varepsilon }_{\text{e}}}\left( t' \right) \right\rangle =\left\langle {{p}_{\text{r}}}(t'){{\varepsilon }_{\text{r}}}(t) \right\rangle =0 \\ \end{align} \right. $
(2) 式中,a0为净增益系数, A为自饱和系数; I为光强, B为载波信号振幅,Ω为低频调制信号频率;pr(t′)为抽运噪声实部, εr(t′)为位相锁定后的量子噪声;P和Q是抽运噪声强度和量子噪声强度, τ为抽运噪声自关联时间, ω为高频载波信号频率, D为调制信号振幅;λ为量子噪声实部、虚部之间的关联系数,其取值范围为λ≤1。本文中所讨论的物理量,均无量纲。
设I=I0+δ(t′),δ(t′)为微小扰动项,I0为定态光强。在I0=a0/A附近, 对(1)式线性化处理得:
$ \begin{matrix} \text{d}\delta (t')/\text{d}t'=-\gamma \delta \left( t' \right)+Q\text{ }\left( 1-\left| \lambda \right| \right)+2{{I}_{0}}{{p}_{\text{r}}}(t')+ \\ 2{\sqrt {{I_0}} }{{\varepsilon }_{\text{r}}}\left( t' \right)+B\left[ 1-D\cos \left( \mathit{\Omega }t' \right) \right]\cos(\omega t') \\ \end{matrix} $
(3) 式中, γ=2a0。
定义归一化稳态平均光强关联函数:
$ C(t) = \mathop {\lim }\limits_{t' \to \infty } {\mkern 1mu} \frac{{\overline {\left\langle {I{\rm{ }}\left( {t'} \right){\rm{ }}I{\rm{ }}\left( {t' + t} \right)} \right\rangle } - \overline {{{\left\langle {I{\rm{ }}\left( {t'} \right)} \right\rangle }^2}} }}{{\overline {{{\left\langle {I{\rm{ }}\left( {t'} \right)} \right\rangle }^2}} }} $
(4) 进行傅里叶变换, 得出光强的功率谱:
$ S\text{ }\left( \omega ' \right)={{S}_{1}}\left( \omega ' \right)+{{S}_{2}}\left( \omega ' \right) $
式中, S1(ω′)为输出信号功率谱, S2(ω′)为输出噪声功率谱。输出信号功率谱中有3个信号频率,输出总信号功率为:
$ {{P}_{S}}=\int_{0}^{\infty }{{{S}_{1}}(\omega ')\text{ d}\omega '} $
(5) 信噪比的定义为输出信号功率与3个信号频率处单位噪声功率之和的比值(只取正ω的谱):
$ R=\frac{{{P}_{S}}}{{{S}_{2}}\left( \omega \right)+{{S}_{2}}\left( \omega +\mathit{\Omega } \right)+{{S}_{2}}(\omega -\mathit{\Omega })} $
(6) 式中,
$ \begin{matrix} {{P}_{S}}=\frac{{{\text{ }\!\!\pi\!\!\text{ }}^{2}}{{B}^{2}}{{D}^{2}}}{4{{I}_{0}}^{2}{{\left[ {{\gamma }^{2}}+{{\left( \mathit{\Omega }+\omega \right)}^{2}} \right]}^{2}}}\left[ \frac{{{\gamma }^{2}}}{\mathit{\Omega }+\omega }+\left( \mathit{\Omega }+\omega \right) \right]+ \\ \frac{{{\text{ }\!\!\pi\!\!\text{ }}^{2}}{{B}^{2}}{{D}^{2}}}{4{{I}_{0}}^{2}{{\left[ {{\gamma }^{2}}+{{\left( \mathit{\Omega }-\omega \right)}^{2}} \right]}^{2}}}\left[ \frac{{{\gamma }^{2}}}{\mathit{\Omega }-\omega }+\left( \mathit{\Omega }-\omega \right) \right]+\frac{{{\text{ }\!\!\pi\!\!\text{ }}^{2}}{{B}^{2}}}{{{I}_{0}}^{2}\Omega ({{\gamma }^{2}}+{{\omega }^{2}})} \\ \end{matrix} $
(7) $ \left\{ \begin{align} &{{S}_{2}}\left( \omega \right)=\frac{2\text{ }\!\!\pi\!\!\text{ }{{Q}^{2}}{{\left( 1-\left| \lambda \right| \right)}^{2}}}{{{I}_{0}}^{2}{{\gamma }^{2}}}+\frac{4P{{\tau }^{2}}}{({{\gamma }^{2}}{{\tau }^{2}}-1)({{\omega }^{2}}{{\tau }^{2}}+1)}+ \\ &\frac{4}{{{\gamma }^{2}}+{{\omega }^{2}}}\left[ \frac{Q\text{ }\left( 1+\left| \lambda \right| \right)}{{{I}_{0}}}-\frac{P}{{{\gamma }^{2}}{{\tau }^{2}}-1} \right] \\ &{{S}_{2}}\left( \omega +\mathit{\Omega } \right)=\frac{2\text{ }\!\!\pi\!\!\text{ }{{Q}^{2}}{{\left( 1-\left| \lambda \right| \right)}^{2}}}{{{I}_{0}}^{2}{{\gamma }^{2}}}+\frac{4P{{\tau }^{2}}}{({{\gamma }^{2}}{{\tau }^{2}}-1)\left[ {{\left( \omega +\mathit{\Omega } \right)}^{2}}{{\tau }^{2}}+1 \right]}+ \\ &\frac{4}{{{\gamma }^{2}}+{{\left( \omega +\mathit{\Omega } \right)}^{2}}}\left[ \frac{Q\left( 1+\left| \lambda \right| \right)}{{{I}_{0}}}-\frac{P}{{{\gamma }^{2}}{{\tau }^{2}}-1} \right] \\ &{{S}_{2}}\left( \omega -\mathit{\Omega } \right)=\frac{2\text{ }\!\!\pi\!\!\text{ }{{Q}^{2}}{{\left( 1-\left| \lambda \right| \right)}^{2}}}{{{I}_{0}}^{2}{{\gamma }^{2}}}+\frac{4P{{\tau }^{2}}}{({{\gamma }^{2}}{{\tau }^{2}}-1)\left[ {{\left( \omega -\mathit{\Omega } \right)}^{2}}{{\tau }^{2}}+1 \right]}+ \\ &\frac{4}{{{\gamma }^{2}}+{{\left( \omega -\mathit{\Omega } \right)}^{2}}}\left[ \frac{Q\text{ }\left( 1+\left| \lambda \right| \right)}{{{I}_{0}}}-\frac{P}{{{\gamma }^{2}}{{\tau }^{2}}-1} \right] \\ \end{align} \right. $
(8)
偏置信号和噪声对单模激光随机共振的影响
Influence of biased signal and noise on characteristics of stochastic resonance in single mode laser
-
摘要: 为了研究激光系统的性质,采用色抽运噪声和实虚部关联的量子噪声驱动的单模激光损失模型,用线性化近似方法,对单模激光系统的输出光强信噪比进行了理论分析;并具体分析了调制信号振幅、低频调制信号频率、高频载波信号频率、量子噪声强度、抽运噪声强度以及量子噪声实部、虚部间的关联系数对系统随机共振的影响。结果表明,信噪比随激光系统净增益系数存在随机共振现象。此结果对优化激光动力学提供了理论依据。Abstract: In order to study characteristics of a laser system, the signal-to-noise ratio (SNR) of the output laser intensity for a single mode laser was analyzed theoretically by means of linear approximation based on the loss model for a single mode laser driven by the colored pump noise and quantum noise with correlation of the real and imaginary parts. Then, effects of amplitude, low frequency of modulation signal, high frequency of carrier signal, intensity of quantum and pump noise, correlation coefficient of quantum noise between the real and imaginary parts on stochastic resonance of a laser system were analyzed in detail. It is found that the SNR has stochastic resonance phenomenon because of the net gain coefficient of the laser system. The result will provide some theoretical basis to optimize laser dynamics.
-
[1] LIANG Y L, YANG S H, ZHAO Ch M, et al. Research of intensity noise suppression in laser diode-pump Nd:YAG lasers[J]. Laser Technology, 2016, 40(1): 113-117(in Chinese). [2] BENZI R, SUTERA A, VULPIANI A. The mechanism of stochastic resonance[J]. Journal of Physics, 1981, A14(11): L453-L457. [3] ROZENFELD R, FREUND J A, NEIMAN A, et al. Noise-induced phase synchronization enhanced by dichotomic noise[J]. Physical Review, 2001, E64(5): 051107-051114. [4] LUO X Q, ZHU Sh Q. Stochastic resonance driven by two different kinds of colored noise in a bistable system[J]. Physical Review, 2003, E67(2):021104-021117. [5] TESSONE C J, WIO H S, HANGGI P. Stochastic resonance driven by time modulated correlated white noise sources[J]. Physical Review, 2000, E62(4):4623-4632. [6] LUO X Q, ZHU Sh Q, CHEN X F. Effects of colored noise on the intensity and phase in a laser system[J]. Physics Letters, 2001, A287(1/2):111-119. [7] CHENG Q H, CAO L, WU D J, et al. Analyses of valid range for the linear approximation in a single-mode laser[J]. Acta Photonica Sinica, 2004, 33(5):517-520(in Chinese). [8] YE Q, LI J X, YANG M, et al. Phenomenon of resonance in a two-mode laser with an input additive signal[J]. Communications in Theoretical Physics, 2010, 54(5):875-878. doi: 10.1088/0253-6102/54/5/20 [9] ZHANG L Y, JIN G X, WANG Zh Y, et al. Energetic stochastic resonance in gain-noise model for single-mode laser[J]. Acta Physica Sinica, 2015, 64(3):034210(in Chinese). [10] LUO X Q. Correlated colored noises in a nonlinear system[J]. Acta Physica Sinica, 2002, 51(5):977-981(in Chinese). [11] JIN Y F, XU W, LI W, et al. Stochastic resonance for periodically modulated noise in a linear system[J]. Acta Physica Sinica, 2005, 54(6):2562-2567(in Chinese). [12] ZHAO Y, GAO Ch Q, CAO Y L, et al. Study on laser-diode-pumped 1319nm single frequency laser tuning and noise suppression[J]. Laser Technology, 2004, 28(5): 466-468(in Chinese). [13] BARZYKIN A V, SEKI K, SHIBATA F. Periodically driven linear system with multiplicative colored noise[J]. Physics Review, 1998, E57(6):6555-6563. [14] CHENG Q H, CAO L, WU D J, et al. Stochastic resonance of the signal-to-noise ratio versus the net gain in a single-model laser system[J]. Acta Photonica Sinica, 2004, 33(8):901-904(in Chinese). [15] XU D H, WU Z X, CAO L, et al. Influence of the input signal and noise on characteristic of stochastic resonance in a single mode laser system[J]. Acta Photonica Sinica, 2005, 34(9):1311-1315(in Chinese). [16] YE Q. Evolution of the intensity correlation function in a single-mode laser with a biased amplitude modulation[J]. Acta Photonica Sinica, 2014, 43(11):11140011(in Chinese). [17] YE Q, ZHANG J L. Intensity fluctuation and power spectrum in a single-mode laser[J]. Laser & Infrared, 2016, 46(5):565-569(in Chinese). [18] WANG F, GUI D, HE L P. Steady-state mean normalized intensity fluctuation of a single mode laser driven by color-pump noises modulated by a periodic signal[J]. Journal of Hubei Polytechnic University, 2015, 31(1):47-50(in Chinese). [19] KE Sh Zh, CAO L, WU D J, et al. General laser intensity Langevin equation in a single-mode laser model[J]. Chinese Physics Letters, 2001, 18(3):370-372. doi: 10.1088/0256-307X/18/3/320