高级检索

复合结构光子晶体耦合腔波导慢光特性研究

刘文楷, 孙耀, 董小伟

刘文楷, 孙耀, 董小伟. 复合结构光子晶体耦合腔波导慢光特性研究[J]. 激光技术, 2017, 41(4): 591-595. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.027
引用本文: 刘文楷, 孙耀, 董小伟. 复合结构光子晶体耦合腔波导慢光特性研究[J]. 激光技术, 2017, 41(4): 591-595. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.027
LIU Wenkai, SUN Yao, DONG Xiaowei. Investigation on slow light in composite-structure photonic crystal coupled-cavity waveguide[J]. LASER TECHNOLOGY, 2017, 41(4): 591-595. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.027
Citation: LIU Wenkai, SUN Yao, DONG Xiaowei. Investigation on slow light in composite-structure photonic crystal coupled-cavity waveguide[J]. LASER TECHNOLOGY, 2017, 41(4): 591-595. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.027

复合结构光子晶体耦合腔波导慢光特性研究

基金项目: 

北方工业大学长城学者后备人才资助项目 CCXZ201307

国家自然科学基金资助项目 61007007

详细信息
    作者简介:

    刘文楷(1968-), 男, 副教授, 博士, 主要研究光子器件及集成技术。E-mail:liuwk@ncut.edu.cn

  • 中图分类号: TN252

Investigation on slow light in composite-structure photonic crystal coupled-cavity waveguide

  • 摘要: 为了设计能够传输宽带低色散慢光的光子晶体波导,以三角晶格圆形介质柱光子晶体结构为基础,使用圆形散射元和椭圆形散射元进行周期性排列,采用平面波展开法对所设计的耦合腔波导进行了仿真分析。结果表明,调整缺陷行椭圆形散射元长轴Ra可以使导模最大群速度从0.035c降低到0.01c,调节缺陷行短轴Rb的值,可以再次降低导模群速度;通过改变微腔周围第1排两种散射元的面积比,能够得到最大群速度0.0065c,波长范围为3.25nm的低色散慢光;将所设计的耦合腔应用于光缓存中,计算得出缓存时间为76.82ps,存储容量达到了15.56bit。这项研究对新型光子晶体慢光器件的设计和应用具有参考意义。
    Abstract: In order to design a photonic crystal waveguide which can propagate slow light with wide band and low dispersion, on the basis of photonic crystal structure of triangular lattice dielectric cylinder, the periodic arrangement was carried out using circular scatterers and elliptic scatterers. Plane wave expansion method was used to simulate the designed coupled cavity waveguide. The results show that the maximum group velocity of guided mode decreases from 0.035c to 0.01c by changing long axis Ra of oval scatterers in defect line. The group velocity can be further decreased when short axis Rb in defect line is changed. Further study shows that by changing area ratio of two scatterers of the first row around the microcavity, the maximum group velocity is reduced to 0.0065c, and low dispersion slow light with wavelength range of 3.25nm was gotten. When the designed coupled cavity was used in optical buffer, cache time of 76.82ps and the maximum ache capacity of 15.56bit can be achieved. The research has reference value in the design and application of novel devices based on photonic crystal waveguides.
  • Figure  1.   Structure of photonic crystal coupled cavity waveguide

    Figure  2.   a—TM mode band diagram of structure in Fig. 1 b—group velocity of guided mode in Fig. 2a

    Figure  3.   a—relationship of frequency and wave number with different Ra b—relationship of group velocity and frequency with different Ra

    Figure  4.   Relationship of group velocity and frequency with different Rb

    Figure  5.   a—relationship of group velocity and frequency with different Se/Ss b—relationship of GVD and frequency with different Se/Ss

    Table  1   Slow light property with the change of parameters

    parameters in defeat line Se/Ss λ0/nm ng Δλ/nm NDBP
    Ra Rb
    0.47a 1568.42 81.44 5.60 0.2910
    0.45a 1563.89 99.09 5.50 0.3482
    0.43a 0.20a 1560.71 105.97 5.13 0.3484
    0.41a 1558.18 103.06 5.25 0.3476
    0.39a 1.40 1555.72 92.79 5.81 0.3470
    0.19a 1556.94 116.04 4.67 0.3480
    0.18a 1553.63 122.69 4.40 0.3475
    0.17a 1555.05 124.12 4.33 0.3469
    0.16a 1547.39 118.48 4.51 0.3460
    0.43a 1.40 1553.63 122.69 4.40 0.3475
    1.37 1552.92 142.44 3.79 0.3479
    0.18a 1.34 1552.30 166.00 3.25 0.3480
    1.31 1551.77 191.34 2.36 0.2917
    1.28 1551.29 223.80 2.02 0.2918
    下载: 导出CSV

    Table  2   Buffer property with the change of Se/Ss

    Ra, Rb in defeat line Se/Ss vg, max/c Q C/bit Ts/ps
    Ra=0.43aRb=0.18a 1.40 0.0088 353.01 15.52 56.78
    1.37 0.0076 409.46 15.55 65.92
    1.34 0.0065 476.92 15.56 76.82
    1.31 0.0056 655.90 13.75 88.56
    1.28 0.0047 766.92 13.06 103.57
    下载: 导出CSV
  • [1]

    SHAIK E H, RANGASWAMY N. Improved design of all-optical photonic crystal logic gates using T-shaped waveguide[J]. Optical & Quantum Electronics, 2016, 48(1):1-15.

    [2]

    HOSSEINI A, KWONG D, SUBBARAMAN H, et al. Low dispersion slow light in silicon-on-insulator photonic crystal waveguide[J]. Photonic & Phononic Crystal Materials & Devices, 2010, 7609(1):1114-1125.

    [3]

    LI W. Study on band gap and waveguide coupling characteristicsof air pattern photonic crystal[J]. Laser Technology, 2012, 36(2): 228-229(in Chinese).

    [4]

    PU S, WANG H, WANG N, et al. Extremely large bandwidth and ultralow-dispersion slow light in photonic crystal waveguides with magnetically controllability[J]. Applied Physics, 2013, B112(2):223-229.

    [5]

    LIU Y F, LIU B, CHEN J, et al. Study on filtering characteristics based on tooth-shaped photonic crystal waveguide[J]. Laser Technology, 2016, 40(2):237-240(in Chinese).

    [6]

    WANG X W, ZHANG W, HAN J T, et al. Investigation of structure design and transmission characteristic of GeSbSe photonic crystal waveguides[J]. Chinese Journal of Lasers, 2015, 42(1):0105001(in Chinese). DOI: 10.3788/CJL

    [7]

    TONG K, ZHANG Zh G, LU J R, et al. Hybrid plasmonic photonic crystal nano microcavity[J]. Chinese Journal of Lasers, 2014, 41(9):0905009(in Chinese). DOI: 10.3788/CJL

    [8]

    ZHANG W, WANG Zh Y, WANG W Ch, et al. Investigation on wideband slow light based on photonic-crystal coupled waveguides[J]. Acta Optica Sinica, 2012, 32(2):0213001(in Chinese). DOI: 10.3788/AOS

    [9]

    ZHANG Zh X, XIAO J. Analysis of energy band structure of 1-D photonic crystal[J]. Laser Technology, 2015, 39(4): 525-527(in Chinese).

    [10]

    LIU W K, DENG J Sh, DONG X W. Investigation on slow light in photonic crystal with air ring[J]. Chinese Journal of Lasers, 2016, 43(1):0106004(in Chinese). DOI: 10.3788/CJL

    [11]

    GUO Y, ZHANG Zh Y, QIAO J L, et al. Slow light effect of photonic crystal waveguides with silicon wafer by using crescent scatterers[J]. Journal of Qingdao University(Natural Science Edition), 2015, 28(1):35-39(in Chinese).

    [12]

    WAN Y, HAN W J, JIA M H, et al. Slow light effect of coupled waveguide with eye-shaped scatterers[J]. Acta Optica Sinica, 2015, 35(3):144-152(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswx-wlx201802007

    [13]

    WAN Y, FU K, YUN M J, et al. Slow light effect with low group velocity and low dispersion by adjusting parameters of cylinder-segment scatterers[J]. Chinese Journal of Lasers, 2013, 40(1):0106002(in Chinese).

    [14]

    MAO Q M, LI Ch H, XIA Zh. Investigation on slow light properties in rectangular holes photonic crystal waveguide[J]. Acta Photonica Sinica, 2016, 45(2):159-164(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gzxb201602027

    [15]

    ZHANG M, PAN W, YAN L Sh, et al. Research of slow light in the two-dimensional triangular rods photenic crystal line defected waveguide[J]. Chinese Journal of Lasers, 2009, 36(4):857-861(in Chinese). DOI: 10.3788/JCL

    [16]

    LI Ch H, WAN Y, MAO Q M. Research of slow light performances of photonic crystal couple resonator optical waveguides formed by oval rods cavities[J]. Acta Optica Sinica, 2015, 44(4): 0416002(in Chinese).

    [17]

    ZHAO Y, ZHANG Y N, WANG Q, et al. Review on the optimization methods of slow light in photonic crystal waveguide[J]. IEEE Transactions on Nanotechnology, 2015, 14(3):407-426. DOI: 10.1109/TNANO.2015.2394410

    [18]

    ZHANG Ch X, XU X Sh, XI W, et al. Research on the slow light characteristics of a novel low-dispersion photonic-crystal coupled-cavity waveguide[J]. Laser & Optoelectronics Progress, 2013, 50(5): 051301(in Chinese).

    [19]

    DONG X W, QUAN W, LIU W K. Investigation on slow light in photonic crystal coupled-cavity waveguide[J]. Acta Photonica Sinica, 2015, 44(2): 181-184(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gzxb201502032

图(5)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-20
  • 修回日期:  2016-11-27
  • 发布日期:  2017-07-24

目录

    /

    返回文章
    返回