-
第1.3节中通过改变耦合腔附近第1排介质柱的比例,虽然有效地降低了导模群速度,但是却增大了群速度色散,使得符合传输条件的有效带宽不断减小。为了比较复合结构耦合腔波导在不同波长范围内的低色散慢光特性,可以引入归一化延时带宽积(normalized delay banduidth product, NDBP)NDBP作为衡量指标。定义慢光的平均群折射率$ {\tilde n_{\rm{g}}} = \sum {n_{{\rm{i, g}}}}({\lambda _{\rm{i}}})/N $和相应的波长带宽为Δλ=λmax-λmin,群折射率平坦率$ \sigma = ({n_{{\rm{g, max}}}} - {n_{{\rm{g, min}}}})/(2{\tilde n_g})$,规定群折射率平坦率σ≤10%,即群折射率ng在(1±10%)ñg范围内为低色散的慢光传输区域。NDBP可以表示为NDBP=ngΔλ/λ0,λ0为中心波长。
从表 1可以看出,当保持缺陷行介质柱短轴不变时,长轴取0.45a和0.43a可以得到较大的NDBP,比Ra=0.48a时的NDBP提高约19.69%,长轴为0.43a时,平坦导模的群折射率最大,同时NDBP也达到最大值0.3484。当缺陷行长轴Ra取0.43a、调整短轴Rb值为0.17a和0.18a时,可进一步增大群折射率。本文中取Rb=0.18a,相应的低色散区的波长范围为4.40nm。此时减小Se/Ss的值,虽然可以得到更高的群折射率,但是导模的带宽值也相应减小,这与1.3节中的结果相符合。当Se/Ss从1.40减小到1.34时,NDBP的值基本保持不变,而当Se/Ss从1.34减小到1.28时,NDBP值降低,导模的群速度和色散特性有所下降。可以得出:当Se/Ss=1.34时,导模的群折射率取得最大值166.00,此时的低色散波长范围为3.25nm,延迟带宽积NDBP=0.3480,该光子晶体耦合腔可以传输宽带低色散慢光。
Table 1. Slow light property with the change of parameters
parameters in defeat line Se/Ss λ0/nm ng Δλ/nm NDBP Ra Rb 0.47a 1568.42 81.44 5.60 0.2910 0.45a 1563.89 99.09 5.50 0.3482 0.43a 0.20a 1560.71 105.97 5.13 0.3484 0.41a 1558.18 103.06 5.25 0.3476 0.39a 1.40 1555.72 92.79 5.81 0.3470 0.19a 1556.94 116.04 4.67 0.3480 0.18a 1553.63 122.69 4.40 0.3475 0.17a 1555.05 124.12 4.33 0.3469 0.16a 1547.39 118.48 4.51 0.3460 0.43a 1.40 1553.63 122.69 4.40 0.3475 1.37 1552.92 142.44 3.79 0.3479 0.18a 1.34 1552.30 166.00 3.25 0.3480 1.31 1551.77 191.34 2.36 0.2917 1.28 1551.29 223.80 2.02 0.2918 可以用缓存时间Ts和存储容量C描述该耦合腔的缓存特性。定义缓存长度L=60l,l为单个耦合腔的宽度,缓存时间$ {T_{\rm{s}}} = \frac{L}{{{v_{\rm{g}}}}} = L{n_{\rm{g}}} $,存储容量$ C = \frac{L}{{{v_{\rm{g}}}}} \times \frac{{\Delta {\omega _0}}}{{4{\rm{ \mathsf{ π} }}}} = \frac{L}{{c/{n_{\rm{g}}}}}\frac{{c\Delta \omega }}{{2a}} = \frac{L}{{2a}}{n_{\rm{g}}}\Delta \omega $,其中Δω0为波导中缺陷模式的带宽,Δω为导模的归一化带宽,耦合腔的品质因子Q=ω0/Δω=λ0/Δλ。Se/Ss从1.40减小到1.28的过程中,对应的光缓存参量如表 2所示。随着Se/Ss减小,耦合腔的缓存时间和品质因子有着明显的增大,当Se/Ss从1.40变化到1.34时,存储容量增大了0.04bit,当Se/Ss从1.34变化到1.31时,存储容量减小1.81bit。由实验分析发现,当Se/Ss=1.34时,耦合腔波导具有良好的慢光缓存能力,此时的存储容量达到最大值15.56bit,品质因子为452.75,缓存时间达到了76.82ps。
Table 2. Buffer property with the change of Se/Ss
Ra, Rb in defeat line Se/Ss vg, max/c Q C/bit Ts/ps Ra=0.43a,Rb=0.18a 1.40 0.0088 353.01 15.52 56.78 1.37 0.0076 409.46 15.55 65.92 1.34 0.0065 476.92 15.56 76.82 1.31 0.0056 655.90 13.75 88.56 1.28 0.0047 766.92 13.06 103.57 参考文献[18]中通过平移耦合腔波导两侧散射元优化波导慢光特性,得到最大群折射率为142.6,带宽为2.16nm,归一化延时带宽积为0.1956,本文中实现的群折射率为166.00,比之增大了16.4%,导模有效带宽为3.25nm,增大了50.5%,归一化延迟带宽积为0.3480,改善了77.9%。参考文献[19]中通过改变耦合腔之间介质柱数目与改变第1排介质柱平移量相结合的方法,实现了群速度最大值为0.03c的慢光,本文中耦合腔波导结构得到的群速度最大值为0.0065c,比之降低了一个数量级。
复合结构光子晶体耦合腔波导慢光特性研究
Investigation on slow light in composite-structure photonic crystal coupled-cavity waveguide
-
摘要: 为了设计能够传输宽带低色散慢光的光子晶体波导,以三角晶格圆形介质柱光子晶体结构为基础,使用圆形散射元和椭圆形散射元进行周期性排列,采用平面波展开法对所设计的耦合腔波导进行了仿真分析。结果表明,调整缺陷行椭圆形散射元长轴Ra可以使导模最大群速度从0.035c降低到0.01c,调节缺陷行短轴Rb的值,可以再次降低导模群速度;通过改变微腔周围第1排两种散射元的面积比,能够得到最大群速度0.0065c,波长范围为3.25nm的低色散慢光;将所设计的耦合腔应用于光缓存中,计算得出缓存时间为76.82ps,存储容量达到了15.56bit。这项研究对新型光子晶体慢光器件的设计和应用具有参考意义。Abstract: In order to design a photonic crystal waveguide which can propagate slow light with wide band and low dispersion, on the basis of photonic crystal structure of triangular lattice dielectric cylinder, the periodic arrangement was carried out using circular scatterers and elliptic scatterers. Plane wave expansion method was used to simulate the designed coupled cavity waveguide. The results show that the maximum group velocity of guided mode decreases from 0.035c to 0.01c by changing long axis Ra of oval scatterers in defect line. The group velocity can be further decreased when short axis Rb in defect line is changed. Further study shows that by changing area ratio of two scatterers of the first row around the microcavity, the maximum group velocity is reduced to 0.0065c, and low dispersion slow light with wavelength range of 3.25nm was gotten. When the designed coupled cavity was used in optical buffer, cache time of 76.82ps and the maximum ache capacity of 15.56bit can be achieved. The research has reference value in the design and application of novel devices based on photonic crystal waveguides.
-
Table 1. Slow light property with the change of parameters
parameters in defeat line Se/Ss λ0/nm ng Δλ/nm NDBP Ra Rb 0.47a 1568.42 81.44 5.60 0.2910 0.45a 1563.89 99.09 5.50 0.3482 0.43a 0.20a 1560.71 105.97 5.13 0.3484 0.41a 1558.18 103.06 5.25 0.3476 0.39a 1.40 1555.72 92.79 5.81 0.3470 0.19a 1556.94 116.04 4.67 0.3480 0.18a 1553.63 122.69 4.40 0.3475 0.17a 1555.05 124.12 4.33 0.3469 0.16a 1547.39 118.48 4.51 0.3460 0.43a 1.40 1553.63 122.69 4.40 0.3475 1.37 1552.92 142.44 3.79 0.3479 0.18a 1.34 1552.30 166.00 3.25 0.3480 1.31 1551.77 191.34 2.36 0.2917 1.28 1551.29 223.80 2.02 0.2918 Table 2. Buffer property with the change of Se/Ss
Ra, Rb in defeat line Se/Ss vg, max/c Q C/bit Ts/ps Ra=0.43a,Rb=0.18a 1.40 0.0088 353.01 15.52 56.78 1.37 0.0076 409.46 15.55 65.92 1.34 0.0065 476.92 15.56 76.82 1.31 0.0056 655.90 13.75 88.56 1.28 0.0047 766.92 13.06 103.57 -
[1] SHAIK E H, RANGASWAMY N. Improved design of all-optical photonic crystal logic gates using T-shaped waveguide[J]. Optical & Quantum Electronics, 2016, 48(1):1-15. [2] HOSSEINI A, KWONG D, SUBBARAMAN H, et al. Low dispersion slow light in silicon-on-insulator photonic crystal waveguide[J]. Photonic & Phononic Crystal Materials & Devices, 2010, 7609(1):1114-1125. [3] LI W. Study on band gap and waveguide coupling characteristicsof air pattern photonic crystal[J]. Laser Technology, 2012, 36(2): 228-229(in Chinese). [4] PU S, WANG H, WANG N, et al. Extremely large bandwidth and ultralow-dispersion slow light in photonic crystal waveguides with magnetically controllability[J]. Applied Physics, 2013, B112(2):223-229. [5] LIU Y F, LIU B, CHEN J, et al. Study on filtering characteristics based on tooth-shaped photonic crystal waveguide[J]. Laser Technology, 2016, 40(2):237-240(in Chinese). [6] WANG X W, ZHANG W, HAN J T, et al. Investigation of structure design and transmission characteristic of GeSbSe photonic crystal waveguides[J]. Chinese Journal of Lasers, 2015, 42(1):0105001(in Chinese). doi: 10.3788/CJL [7] TONG K, ZHANG Zh G, LU J R, et al. Hybrid plasmonic photonic crystal nano microcavity[J]. Chinese Journal of Lasers, 2014, 41(9):0905009(in Chinese). doi: 10.3788/CJL [8] ZHANG W, WANG Zh Y, WANG W Ch, et al. Investigation on wideband slow light based on photonic-crystal coupled waveguides[J]. Acta Optica Sinica, 2012, 32(2):0213001(in Chinese). doi: 10.3788/AOS [9] ZHANG Zh X, XIAO J. Analysis of energy band structure of 1-D photonic crystal[J]. Laser Technology, 2015, 39(4): 525-527(in Chinese). [10] LIU W K, DENG J Sh, DONG X W. Investigation on slow light in photonic crystal with air ring[J]. Chinese Journal of Lasers, 2016, 43(1):0106004(in Chinese). doi: 10.3788/CJL [11] GUO Y, ZHANG Zh Y, QIAO J L, et al. Slow light effect of photonic crystal waveguides with silicon wafer by using crescent scatterers[J]. Journal of Qingdao University(Natural Science Edition), 2015, 28(1):35-39(in Chinese). [12] WAN Y, HAN W J, JIA M H, et al. Slow light effect of coupled waveguide with eye-shaped scatterers[J]. Acta Optica Sinica, 2015, 35(3):144-152(in Chinese). [13] WAN Y, FU K, YUN M J, et al. Slow light effect with low group velocity and low dispersion by adjusting parameters of cylinder-segment scatterers[J]. Chinese Journal of Lasers, 2013, 40(1):0106002(in Chinese). [14] MAO Q M, LI Ch H, XIA Zh. Investigation on slow light properties in rectangular holes photonic crystal waveguide[J]. Acta Photonica Sinica, 2016, 45(2):159-164(in Chinese). [15] ZHANG M, PAN W, YAN L Sh, et al. Research of slow light in the two-dimensional triangular rods photenic crystal line defected waveguide[J]. Chinese Journal of Lasers, 2009, 36(4):857-861(in Chinese). doi: 10.3788/JCL [16] LI Ch H, WAN Y, MAO Q M. Research of slow light performances of photonic crystal couple resonator optical waveguides formed by oval rods cavities[J]. Acta Optica Sinica, 2015, 44(4): 0416002(in Chinese). [17] ZHAO Y, ZHANG Y N, WANG Q, et al. Review on the optimization methods of slow light in photonic crystal waveguide[J]. IEEE Transactions on Nanotechnology, 2015, 14(3):407-426. doi: 10.1109/TNANO.2015.2394410 [18] ZHANG Ch X, XU X Sh, XI W, et al. Research on the slow light characteristics of a novel low-dispersion photonic-crystal coupled-cavity waveguide[J]. Laser & Optoelectronics Progress, 2013, 50(5): 051301(in Chinese). [19] DONG X W, QUAN W, LIU W K. Investigation on slow light in photonic crystal coupled-cavity waveguide[J]. Acta Photonica Sinica, 2015, 44(2): 181-184(in Chinese).