-
为判断银胶对亚胺硫磷SERS增强的效果,首先采集纯品亚胺硫磷固体,喇曼光谱如图 2所示。查阅参考文献[6],亚胺硫磷605cm-1 , 650cm-1 , 1016cm-1和1454cm-1处的特征峰,谱带分别归属于环变形、P==S伸缩振动、骨架伸缩和O==C—N伸缩。
实验中总共采集了175条SERS喇曼光谱,由于喇曼光谱仪信噪比低,以及采集时的干扰,造成9条异常光谱,将其剔除,剩余166条光谱如图 3所示。将图 3与图 2对比,SERS光谱的特征峰有明显的增强,605cm-1, 1016cm-1, 1454cm-1位置的峰位得到增强。与此同时,图中光谱大部分都不是重合的,只从喇曼光谱图的形态上观察,随着溶液中亚胺硫磷浓度的增加,特征峰强度随着增强。除信号强度存在差异,特征峰峰形和峰位基本保持一致。峰位发生一定程度的偏移,605cm-1位置的峰红移到618cm-1,1016cm-1峰蓝移到1015cm-1,1454cm-1位置的峰蓝移到1449cm-1。图中800cm-1附近的峰以及其它峰为甲醇和乙腈等其它物质的特征峰,无需分析,在数据处理时运用不同预处理方法减小其干扰和影响。
-
检出限是评价一种分析方法优劣的一个重要指标,它可以通过特定的方法,在一定的水平内计算出待测物的最小浓度或最小含量[7]。作者采用留一交互验证法[8]建立偏最小二乘法(partial least square, PLS)定量模型,参与建模的样品选取10mg/L~19mg/L的10个浓度样品,如图 4所示。由下式在一定置信区间内计算出亚胺硫磷的检出限值:
$\mathit{D = }{\rm{3}}\mathit{\sigma /k} $
(1) 式中, σ为预测浓度的标准误差,k为校准线的斜率数值。计算得出,亚胺硫磷混合溶液的检出限值为4.113mg/L。
-
虽然喇曼光谱在检测上有众多优点,但由于原始光谱信号受发射噪声、荧光等方面因素的影响,干扰较大。为了最大消除噪声、荧光和其它背景的干扰以及减小甲醇和乙腈等无关物质的特征峰的干扰,提高样品化学成分数学模型的预测能力和稳定性,通常采用卷积平滑、基线校正、1阶导数、2阶导数等不同光谱预处理方法。卷积平滑通过去除信号中的高频来达到改善信号信噪比的目的,基线校正法能有效地扣除荧光背景和消除光谱仪器造成的影响,最大程度地保留样品有用的光谱信息。1阶导法和2阶导法能有效地消除基线等外部干扰,但会导致信噪比增大[9]。预处理后,结合PLS建立定量分析模型,从中筛选出最优的光谱预处理方法。比较PLS建模算法建立的喇曼光谱与农药含量之间的预测模型,并对模型的预测效果进行评价分析。
-
以166个亚胺硫磷SERS光谱数据和35个浓度真值作为输入,研究618cm-1,1015cm-1,1449cm-1处的特征峰并进行农药残留的定量研究。用化学计量学方法处理光谱数据,采用不同种的预处理结合PLS建立的定量分析模型。按照3:1比例划分,166个光谱数据分为103个校正集,63个预测集,由软件自动随机分配形成。并通过比较校正集与预测集的相关系数Rc和Rp以及校正集与预测集的均方根误差Sc和Sp来评价模型,相关系数和均方根误差最接近,且相关系数越高,均方根误差越小,则建模效果最好,为最优预处理方法。如表 1所示,7种不同的预处理方法结合PLS建立定量模型数据,经过对比可得,基线校正和卷积平滑方法预处理后建立的数学模型的效果最佳。此时预测集的相关系数Rp=0.904,Sp=4.890mg/L,小于检出限值4.113mg/L, 预测集的PLS模型拟合曲线如图 5所示。
Figure 5. Relationship between the predicted value and the reference values of phosmet optimal model
Table 1. PLS comparison after different pretreatment of phosmet
pretreatment method factor calibration value predicten value Rc Sc/
(mg·L-1)Rp Sp/
(mg·L-1)original 10 0.921 3.931 0.898 5.115 1st derivarive 7 0.922 3.916 0.824 6.331 2nd derivarive 6 0.942 3.391 0.764 6.994 savitzky-golay smoothing 10 0.919 3.976 0.899 5.102 baseline 10 0.920 3.954 0.902 4.910 baseline+ savitzkygolay smoothing 10 0.919 3.990 0.904 4.890 baseline+2nd derivarive 6 0.940 3.448 0.763 7.019 savitzky-golay smoothing+2nd derivarive 6 0.880 4.808 0.829 6.117 在校正集样品数为103个不变的情况下,PLS建立的模型与主因子数的选取有关,直接关系到模型的实际预测能力。模型建立过程中进行了最佳主因子数的合理选择,避免了主因子数过少产生建模信息残缺的不良结果,同时也防止了主因子数过大而使得模型太复杂,甚至出现过拟合的实验缺陷。本文中采取光谱数据PLS交叉验证法选取最佳主因子数,见图 6。如图 6所示,当主因子数为10时,均方根误差最小,即为最好预测模型。
表面增强喇曼光谱研究脐橙中亚胺硫磷农药残留
Quantitative study on phosmet residues in navel oranges based on surface enhanced Raman spectra
-
摘要: 为了证实以团絮状银胶为基底的表面增强喇曼光谱(SERS)技术结合化学计量学方法能有效实现脐橙中农药残留检测,采用德国布鲁克公司的共焦显微喇曼光谱仪,对脐橙中的亚胺硫磷农药残留的快速无损检测进行了研究。通过留一交互验证法得出农药检出限为4.113mg/L,并对SERS光谱进行7种方法的预处理。结果表明,先基线校正后卷积平滑预处理的建模预测效果最好;结合偏最小二乘法建模,预测集的相关系数和预测均方根误差分别为0.904和4.890mg/L,校正集的相关系数和预测均方根误差分别为0.919和3.990mg/L。结果证明了SERS定量分析的科学性和可行性,这对国内水果的生产和出口水果的农药残留检测有一定的参考作用。Abstract: In order to confirm that surface enhanced Raman spectroscopy (SERS) with flocculent colloid as substrate, combined with chemometric methods, can effectively detect pesticide residues in oranges, rapid and nondestructive detection of phosmet pesticide residues in navel oranges was studied with the help of confocal laser Raman spectrometer of Germany Bruker Optik GmbH. Detection limit of 4.113mg/L was concluded by cross validation method, and 7 methods of pretreatment of SERS spectra were carried out. After comparison, pretreatment method is the best with baseline correction at first, and then convolution smoothing, combined with partial least squares modeling. Correlation coefficient of prediction set is 0.904 and root mean square error of prediction set is 4.890mg/L. Correlation coefficient of correction set is 0.919 and root mean square error of correction set is 3.990mg/L. The results prove that the scientificity and feasibility of quantitative analysis of SERS. The study has certain reference in pesticide residue detection of export fruit and industrial production of domestic fruit.
-
Table 1. PLS comparison after different pretreatment of phosmet
pretreatment method factor calibration value predicten value Rc Sc/
(mg·L-1)Rp Sp/
(mg·L-1)original 10 0.921 3.931 0.898 5.115 1st derivarive 7 0.922 3.916 0.824 6.331 2nd derivarive 6 0.942 3.391 0.764 6.994 savitzky-golay smoothing 10 0.919 3.976 0.899 5.102 baseline 10 0.920 3.954 0.902 4.910 baseline+ savitzkygolay smoothing 10 0.919 3.990 0.904 4.890 baseline+2nd derivarive 6 0.940 3.448 0.763 7.019 savitzky-golay smoothing+2nd derivarive 6 0.880 4.808 0.829 6.117 -
[1] ZHU Y, LI M, YU D, et al. A novel paper rag as'D-SERS' substrate for detection of pesticide residues at various peels [J]. Talanta, 2014, 128:117-124. doi: 10.1016/j.talanta.2014.04.066 [2] WEN Ch Ch, QING J K, JIANG Q K, et al. Use of AgNPs and gold electrode as substrates Raman enhancement for rapid detection of sulfur-containing pesticide residues at fruit[J]. Food Science and Technology, 2016, 41(4): 305-309(in Chinese). [3] WENG Sh Zh. Research on rapid analysis and detection of organ phosphorus pesticide residues based on spectral absorption/surface-enhanced Raman spectroscopy [D]. Chengdu: University of Science and Technology of China, 2015: 10(in Chinese). [4] WANG X T, WU R M, LING J, et al. Study on the rapid detection of triazophos residues in flesh of navel orange by using surface-enhanced raman scattering [J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 736-742(in Chinese). [5] STRICKLAND A D, BATT C A. Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods[J]. Analytical Chemistry, 2009, 81(8): 2895-2903. doi: 10.1021/ac801626x [6] TANNER P A, LEUNG K. Spectral interpretation and qualitative analysis of organophosphorus pesticides using FT-Raman and FT-infrared spectroscopy [J]. Applied Spectroscopy, 1996, 50(5): 560-575. [7] CHEN J, HUANG Y, KANNAN P, et al. Flexible and adhesive sers active tape for rapid detection of pesticide residues in fruits and vegetables [J]. Analytical Chemistry, 2016, 88(4):2149-2155. doi: 10.1021/acs.analchem.5b03735 [8] ZHOU Zh Y, YUE Y, WANG T, et al. Analysis of PLS component number on impact of stability of quantitative model [J]. Computer Engineering and Design, 2014, 35(5):1788-1791(in Chinese). [9] ZHAI Ch, PENG Y K, LI Y Y, et al. Nondestructive detection of chlorpyrifos in apples based on surface enhanced raman scattering[J]. Acta Chimica Sinica, 2015, 73(11): 1167-1172(in Chinese). doi: 10.6023/A15050326 [10] SHI J F, GUO B F, SHEN H H, et al. Hyperspectral matching method based on absorption features [J]. Laser Technology, 2016, 40(6):848-852(in Chinese).