-
试验材料为轧制的Ti-6Al-4V钛合金板,线切割加工成25mm×25mm×8mm的试样。在激光喷丸处理前,对所有试样表面进行打磨、镜面抛光,并采用无水乙醇清洗试样表面油污。激光喷丸试验选用了江苏大学强激光实验室的高功率Nd:YAG激光器装置系统,激光喷丸参量如表 1所示。选用均匀的流动水层为约束层,0.1mm厚的铝箔为吸收层,喷丸区域大小为13.5mm×13.5mm,激光喷丸线路及处理后的试样外貌如图 1所示。
Table 1. Parameters of laser shot peening technology
pulse energy/
Jspot diameter/
mmlaser pulse width/
nslaser frequency/
Hzlaser wavelength/
nm8 3 10 1 1064 激光喷丸后,1#试样不做任何热处理,将2#试样、3#试样、4#试样和5#试样依次放入SXL系列1208型程控箱式电阻炉内分别加热至400℃, 500℃, 550℃和600℃,保温1h,出炉空冷。
-
残余应力测试采用X350A残余应力测试仪,通过化学腐蚀的方法对试样逐层减薄,以完成试样深度方向的残余应力分布测试,测试允许误差为±10MPa。测试方法采用侧倾固定ψ法,定峰方法采用交相关法;辐射Coka;衍射晶面114;ψ角分别取0°, 25°, 35°和45°;2θ扫描起始角为162°,终止角为152°,扫描步距0.1°;计数时间1.00s;X光管高压20.0kV,X光管电流5.0mA,准直管直径∅2mm。试样的显微硬度采用压入法在HXD-1000TMC/LCD型显微硬度计上测量,加载载荷1.96N,加载时间10s,多次测量取平均值。
-
利用JSM-6480型扫描电镜和JEM-2100(HR)型高分辨透射电子显微镜观测Ti-6Al-4V钛合金试样表层的微观组织。透射电镜(transmission electron microscope, TEM)制样时,需将适当大小的试样线切割成厚度大约1mm的薄片,表面清洗除油后用金相砂纸细磨至0.1mm左右厚度薄片;薄片冲孔成直径3mm的小圆片后,用凹坑减薄仪将圆片磨至20μm~30μm,丙酮浸泡清洗除胶;最后进行电解双喷减薄及离子减薄,减薄后便可观察试样薄区的微观组织。
激光喷丸对Ti-6Al-4V钛合金中高温性能影响研究
Effect of laser shot peening on high temperature property of Ti-6Al-4V titanium alloy
-
摘要: 为了研究激光喷丸对中高温条件下Ti-6Al-4V钛合金残余应力、微观硬度及金相组织演变的影响,采用高功率、短脉冲Nd:YAG激光器对Ti-6Al-4V钛合金表面进行了激光冲击,并将冲击后的试样分别置于400℃,500℃,550℃和600℃的温度下进行了1h的保温处理。利用X射线衍射仪对强化区域的残余应力进行了检测,通过扫描电镜及透射电镜对微观组织进行表征,探究了强化效果与晶粒尺寸、位错运动间的联系。结果表明,激光喷丸处理在试样表层诱导产生较大幅值残余压应力,显微硬度提高;经550℃热处理1h后,残余应力影响层深约为100μm;经400℃、600℃热处理1h后,试样表层微观硬度分别下降了8.3HV和20.1HV;热处理后,晶粒尺寸总体呈现增大趋势。激光喷丸处理可以有效提高Ti-6Al-4V钛合金中高温力学性能。
-
关键词:
- 激光技术 /
- 冲击硬化 /
- 中高温处理 /
- Ti-6Al-4V钛合金 /
- 位错运动
Abstract: In order to study effect of laser shock peening(LSP) on residual stress, micro-hardness and metallographic structure evolution of Ti-6Al-4V titanium alloy at different temperatures, Ti-6Al-4V alloy samples were treated by LSP using high power and short pulse Nd:YAG laser and then were annealed at the temperatures of 400℃, 500℃, 550℃ and 600℃ for 1h respectively. Residual stress was measured by X-ray diffraction (XRD) method and metallographic structures were characterized by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The correlations between strengthening effect and grain size, dislocation were studied based on microstructure observations. The results indicate that high amplitude of residual compressive stress is induced on the surface via laser shock peening and micro-hardness is increased significantly. After the 1h preheating of 550℃, the effect depth of residual stress is about 100μm. After the 1h preheating of 400℃ and 600℃, micro-hardness on the specimen surface declines 8.3HV and 20.1HV respectively. After heat processing, grain size has an increasing trend in general. LSP can effectively improve mechanical property of Ti-6Al-4V titanium alloy at different temperatures. -
Table 1. Parameters of laser shot peening technology
pulse energy/
Jspot diameter/
mmlaser pulse width/
nslaser frequency/
Hzlaser wavelength/
nm8 3 10 1 1064 -
[1] PRAMANIK A. Problems and solutions in machining of titanium alloys [J].The International Journal of Advanced Manufacturing Technology, 2014, 70(5/8): 919-928. [2] HACKEL L A, CHEN H L. Laser peening-A processing tool to strengthen metals or alloys to improve fatigue lifetime and retard stress-induced corrosion cracking [R]. Berlin, Germany: Springer-Verlag, 2003: 9. [3] ARMENDIA M, OSBORNE P, GARAY A, et al. Influence of heat treatment on the machinability of titanium alloys [J]. Materials and Manufacturing Processes, 2012, 27(27): 457-461. [4] WANG C, SHEN X J, AN Z B, et al. Effects of laser shock processing on microstructure and mechanical properties of K403 nickel-alloy [J]. Materials and Design, 2016, 89:582-588. doi: 10.1016/j.matdes.2015.10.022 [5] LU J Z, LUO K Y, DAI F Z, et al. Effects of multiple laser shock processing (LSP) impacts on mechanical properties and wear behaviors of AISI 8620 steel [J]. Materials Science and Engineering, 2012, A536(3): 57-63. [6] MONTROSS C S, YE L. Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue, 2002, 24(10): 1021-1036. doi: 10.1016/S0142-1123(02)00022-1 [7] REN X D, ZHOU W F, LIU F F, et al. Microstructure evolution and grain refinement of Ti-6Al-4V alloy by laser shock processing [J]. Applied Surface Science, 2016, 363:44-49. doi: 10.1016/j.apsusc.2015.11.192 [8] ZHOU Z, BHAMARE S, RAMAKRRISHNAN G, et al.Thermalrelaxation of residual stressin laser shock peened Ti-6Al-4V alloy[J].Surface & Coatings Technology, 2012, 206(22): 4619-4627. [9] ZHANG Y K, HU C L, CAI L, et al. Mechanism of improvement on fatigue life of metal by laser-excited shock waves[J]. Applied Physics, 2001, A72(1):113-116. [10] HOU L H, REN X D, ZHOU W F, et al. Change of surface integrity of Ti-6Al-4V titanium alloy by laser shock processing at middle and high temperatures [J]. Lasers Technology, 2016, 40(2): 288-291 (in Chinese). [11] LUO K Y, LU J Z, WANG Q W, et al. Residual stress distribution of Ti-6Al-4V alloy under different ns-LSP processing parameters [J]. Applied Surface Science, 2013, 285(19): 607-615. [12] REN X D, RUAN L, HUANGFU Y Z, et al. Experimental research of laser shock processing 6061-T651 aluminum alloy during elevated temperature [J]. Chinese Journal of Lasers, 2012, 39(3): 108-111 (in Chinese). [13] XIONG Ch, LI Z F, WANG X D. Thermal stability of microstructure of laser shock processed TC11 titanium alloys[J]. Journal of Plasticity Engineering, 2013, 20(3): 116-120(in Chinese). [14] NIKITIN I, SCHOLTES B, MAIER H J, et al. High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel aisi 304[J]. Scripta Materialia, 2004, 50(10): 1345-1350. doi: 10.1016/j.scriptamat.2004.02.012 [15] LIU Y, ZHU J Ch, YIN Z D. Phase particle coarsening dynamics and pattern change in Ti-6Al-4V alloy [J]. Heat Treatment of Metals, 2002, 27(2): 23-25 (in Chinese). [16] JIA W J, LIU H T, ZHAO H Zh, et al. Thermal stability of near α titanium alloy by laser shock process [J]. Hot Working Technology, 2014, 43(16): 112-114 (in Chinese).