Loading [MathJax]/jax/output/SVG/jax.js
高级检索

应用3维同步荧光光谱测定胭脂红浓度

杜家蒙, 陈国庆, 马超群, 奚留华, 朱纯, 赵金辰, 顾颂

杜家蒙, 陈国庆, 马超群, 奚留华, 朱纯, 赵金辰, 顾颂. 应用3维同步荧光光谱测定胭脂红浓度[J]. 激光技术, 2017, 41(4): 503-506. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.009
引用本文: 杜家蒙, 陈国庆, 马超群, 奚留华, 朱纯, 赵金辰, 顾颂. 应用3维同步荧光光谱测定胭脂红浓度[J]. 激光技术, 2017, 41(4): 503-506. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.009
DU Jiameng, CHEN Guoqing, MA Chaoqun, XI Liuhua, ZHU Chun, ZHAO Jinchen, GU Song. Determination of carmine concentration with 3-D synchronous fluorescence spectrometry[J]. LASER TECHNOLOGY, 2017, 41(4): 503-506. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.009
Citation: DU Jiameng, CHEN Guoqing, MA Chaoqun, XI Liuhua, ZHU Chun, ZHAO Jinchen, GU Song. Determination of carmine concentration with 3-D synchronous fluorescence spectrometry[J]. LASER TECHNOLOGY, 2017, 41(4): 503-506. DOI: 10.7510/jgjs.issn.1001-3806.2017.04.009

应用3维同步荧光光谱测定胭脂红浓度

基金项目: 

国家自然科学基金资助项目 61178032

国家自然科学基金资助项目 61378037

中央高校基本科研业务费专项资金资助项目 JUSRP51517

详细信息
    作者简介:

    杜家蒙(1992-), 女, 硕士研究生, 主要研究方向为生物医学光子学

    通讯作者:

    陈国庆, E-mail:cqq2098@163.com

  • 中图分类号: O433

Determination of carmine concentration with 3-D synchronous fluorescence spectrometry

  • 摘要: 为了测定混合色素溶液中胭脂红的浓度,采用归一化的方法对荧光光谱进行数据预处理,将处理后的光谱数据结合径向基神经网络,建立了对胭脂红含量的预测模型。结果表明,3维同步荧光光谱、普通3维荧光光谱预测结果的平均相对误差分别为2.86%,11.12%;对于混合色素溶液中单个色素浓度的测定,3维同步荧光光谱结合径向基神经网络效果较好。该研究为预测混合色素溶液中各色素浓度提供了帮助。
    Abstract: In order to determine carmine concentration in the mixed pigment solution, normalization method was used to preprocess the fluorescence spectra. The processed data were combined with radial basis function neural network to establish the prediction model of carmine content. The average relative error of the prediction results of 3-D synchronous fluorescence spectrometry and 3-D ordinary fluorescence spectrometry were 2.86% and 11.12% respectively. The results showed that the 3-D synchronous fluorescence spectrometry was superior for the determination of the mixed pigment solution. The research provides the help for the prediction of the pigment concentration in the mixed pigment solution.
  • 我国《食品安全国家标准食品添加剂使用标准》(GB 2760-2011)[1]中明确规定了食用合成色素允许使用的种类、用量及使用范围。许多食用合成色素具有一定的毒性,过量摄入将产生致畸、致癌的风险,需严格控制使用量[2]

    目前常用的成分检测方法有高效液相色谱法[3]、示波极谱法[4-5]、薄层色谱法[6-8]、毛细管电泳法[9-10]和光谱法[11]等。光谱法具有所需的样品量较少、避免了复杂的预处理过程、分析速度快等优点,可用于实时检测中。WANG等人利用普通3维荧光光谱结合自加权交替三线性算法,对中药胡黄连和人体尿液、血液循环系统中的香草酸进行了定量分析[12],香草酸的平均回收率(样本预测浓度和实际浓度比值的平均)分别是是98.4%, 93.1%, 89.7%。MAO等人对样本的同步荧光光谱数据进行预处理,选择不同波段的光谱,结合偏最小二乘法建立了原果汁含量预测模型,得到的预测均方根误差为0.035832,相关系数为0.972570[13]。WANG等人将样本普通3维荧光光谱数据,结合误差逆向传播神经网络,测定溶液中苯并荧蒽和苯并芘的质量浓度,平均回收率分别为99.19%和99.26%[14]

    同步荧光分析法具有窄化谱带、提高选择性[15]等优点,被应用于许多分析领域中,特别是对多组分混合物的测定。对混合物质中各成分含量的测定,目前多采用2维同步荧光光谱结合神经网络的方法。2维同步荧光光谱中,激发波长与发射波长的间隔Δλ的选择很关键,直接影响光谱的形状、带宽及信号强度[15]。Δλ的值可以从理论上做预测,当其等于斯托克斯位移(激发光和荧光之间波长的移动)时,获得荧光信号最强且半峰宽度最小的单峰2维同步荧光光谱。Δλ的值最终要通过实验来确认。与2维同步荧光光谱相比,3维同步荧光光谱[16]中Δλ为一个范围,含有更多荧光光谱数据,避免了有效荧光信息的丢失。3维同步荧光光谱数据为非线性结构,径向基(radial basis function, RBF)神经网络可以任意精度逼近非线性模型,结构简单、收敛速快,是非线性拟合的理想方法之一[17-18]。本文中采用3维同步荧光光谱结合径向基神经网络的方法,测定胭脂红、日落黄混合溶液中胭脂红[19]的浓度,得到了较好的结果。

    3维同步荧光光谱为荧光强度同时随激发波长、激发波长与发射波长的间隔(即Δλ)变化的关系图谱。3维同步荧光光谱有等角3维投影图[15]和等高线光谱图两种表现形式。本文中采用等高线光谱图。

    径向基神经网络属于前向神经网络类型,由MOODY和DARKEN提出。径向基神经网络分为输入层、隐含层及输出层。隐含层空间为由RBF作为隐单元的“基”构成,输入矢量在隐含层中发生变换,在低维线性不可分的数据变换到高维空间,在高维空间实现线性可分[17-18]。因此,RBF适用于非线性模型。RBF神经网络能逼近任意非线性函数,广泛应用于模式识别、时间序列分析、非线性控制等领域。

    实验中所用仪器为FLS920P荧光光谱仪(英国Edinburgh公司)、移液器等。由国家标准物质研究中心提供胭脂红、日落黄标准色素溶液。所用水为超纯水。

    配制浓度为5μg/mL胭脂红、日落黄单体色素溶液。另配制成12组不同浓度的混合色素溶液样品,其中,待测物胭脂红在2μg/mL~5.5μg/mL、干扰物日落黄在0μg/mL~2μg/mL范围内。测量样品的3维同步荧光光谱和普通3维荧光光谱。

    5μg/mL胭脂红、日落黄单体色素溶液,3维同步荧光光谱激发波长为250nm~550nm,每隔2nm激发一次;Δλ在10nm~200nm范围内,每隔2nm进行同步扫描。普通3维荧光光谱激发波长在250nm~550nm范围内,每隔2nm激发一次;发射波长在260nm~750nm范围内,每隔2nm扫描一次。混合色素溶液,3维同步荧光光谱激发波长为250nm~350nm,每隔2nm激发一次;Δλ在10nm~200nm范围内,每隔2nm进行同步扫描。普通3维荧光光谱激发波长范围为250nnm~350nm,每隔2nm激发一次;发射波长260nm~550nm,每隔2nm扫描一次。入射和出射单色狭缝仪大小均为5nm,积分时间为0.1s。

    为便于神经网络的应用,需对荧光光谱数据进行归一化处理。利用下式将数据归一化到0.1~0.9:

    y=0.1+0.8(xxminxmaxxmin) (1)

    式中, x, xmax, xmin分别表示光谱数据、光谱数据中的最大值和最小值; y表示归一化后的数据[20]

    归一化后的数据作为RBF神经网络的输入。RBF神经网络的输出为胭脂红的浓度。实验中采用交叉验证方法中的留一交互验证法,即对于n个样本,每次剔除一个作为预测样本,其余作为训练样本。实验共预测12次,11组作为训练样本,1组预测,12组样本均被预测一次。采用留一交互验验证法,可充分利用已有的样本,减少神经网络因训练样本的输入顺序不同而产生的随机性,减小误差,提高网络的稳定性[20]。以12组样本的平均相对误差,即相对误差绝对值的平均,来判定模型的准确性。与普通3维荧光光谱数据结合RBF神经网络算法预测结果对比,验证3维同步荧光光谱结合RBF神经网络,测定混合色素溶液中胭脂红的浓度具有优越性。

    5μg/mL胭脂红、日落黄单体色素溶液,在最佳激发波长下的发射谱如图 1所示。

    Figure 1. Emission spectra of carmine and sunset yellow in 5μg/mL solution at the best excitation wavelength
    Figure  1.  Emission spectra of carmine and sunset yellow in 5μg/mL solution at the best excitation wavelength

    实验中得到胭脂红、日落黄的荧光光谱特征参量如表 1所示。

    Table  1.  Features of fluorescence spectra
    pigment effective excitation wavelength range/nm optimum excitation wavelength/
    nm
    fluorescence emission wavelength range/
    nm
    fluorescence peak wavelength/
    nm
    carmine 260~350 336 400~510 450
    sunset yellow 264~308 288 380~470 418
    下载: 导出CSV 
    | 显示表格

    由胭脂红、日落黄在其最佳激发波长下的发射谱及其荧光特征参量表均可以看出,胭脂红与日落黄荧光峰的位置比较接近。

    图 2为5μg/mL胭脂红溶液3维同步荧光光谱等高线图及普通3维荧光光谱等高线图。

    Figure 2. Fluorescence spectra of carmine in 5μg/mL solution
    Figure  2.  Fluorescence spectra of carmine in 5μg/mL solution
    a—contour plot of 3-D synchronous spectra b—contour plot of ordinary 3-D spectra

    图 2a图 2b中荧光峰的个数相同,荧光特征参量相近。3维同步荧光光谱等高线图中光谱明显发生了窄化。

    2维同步荧光光谱和普通3维荧光光谱分别结合RBF神经网络,计算得到的混合溶液中待测物胭脂红的预测浓度和相对误差分别见表 2。表中第1组、第2组样本胭脂红浓度均为2.04μg/mL,干扰物日落黄浓度不等。因表格空间限制,synchronous fluorescence代表3维同步荧光光谱。

    Table  2.  Relative error and predicted concentration of carmine by 3-D synchronous fluorescence using RBF
    actual concentration/
    (μg·mL-1)
    predicted concentration of synchronous fluorescence/
    (μg·mL-1)
    predicted concentration of three dimensional fluorescence/
    (μg·mL-1)
    relative error of synchronous fluorescence prediction/
    %
    relative error of three dimensional fluorescence prediction/
    %
    2.04 2.014 2.150 -1.28 5.37
    2.04 2.049 1.655 0.45 18.88
    2.72 2.613 2.687 -3.93 -1.22
    3.20 3.069 3.294 -4.11 2.95
    3.52 3.408 3.133 -3.18 -11.00
    3.76 3.776 3.896 0.43 3.61
    3.82 3.822 3.793 0.05 0.70
    4.3 4.362 3.453 1.44 -19.70
    4.36 4.270 4.674 -2.08 7.19
    4.52 4.197 5.434 -7.16 20.22
    4.80 4.832 4.534 0.67 -5.55
    5.26 4.760 3.315 -9.51 -36.98
    average relative error/% 2.86 11.12
    下载: 导出CSV 
    | 显示表格

    表 2可知,3维同步荧光光谱结合RBF神经网络,测定胭脂红浓度,预测的平均相对误差为2.86%。普通3维荧光光谱结合RBF神经网络,预测结果平均相对误差为11.12%,3维同步荧光光谱平均相对误差减小了8.26%。图 3中示出了3维同步荧光光谱、普通3维荧光光谱结合RBF神经网络预测胭脂红浓度结果。x轴为实际浓度,y轴为预测浓度。从图 3可以看出, 3维同步荧光光谱预测结果均匀分布在直线y=x两侧,距离较近,表明预测结果较好。普通3维荧光光谱预测结果距离直线分布较远,表明预测结果较差。

    Figure 3. Predicted concentration of 3-D synchronous fluorescence and 3-D ordinary fluorescence
    Figure  3.  Predicted concentration of 3-D synchronous fluorescence and 3-D ordinary fluorescence

    (1) 同步荧光分析法能够减小光谱重叠、窄化谱带、提高分辨率,对于多组分混合物的分析常采用该分析方法。3维同步荧光光谱中Δλ为一个范围,与2维同步荧光光谱相比,有效避免了有用荧光信息的丢失。可知,对混合色素溶液中各成分含量的检测,3维同步荧光光谱更具有优势。

    (2) 3维同步荧光光谱数据为非线性结构,RBF神经网络适用于非线性模型。因此,测定日落黄、胭脂红两种荧光峰相近的混合色素溶液中胭脂红的浓度,3维同步荧光光谱结合RBF神经网络结果较好。

    通过采用3维同步荧光光谱结合RBF神经网络算法的方法,预测荧光光谱重叠严重的胭脂红、日落黄混合溶液中胭脂红的浓度,预测结果平均相对误差为2.86%。结果表明,对于混合色素溶液各色素浓度测定,3维同步荧光光谱具有优越性。

  • Figure  1.   Emission spectra of carmine and sunset yellow in 5μg/mL solution at the best excitation wavelength

    Figure  2.   Fluorescence spectra of carmine in 5μg/mL solution

    a—contour plot of 3-D synchronous spectra b—contour plot of ordinary 3-D spectra

    Figure  3.   Predicted concentration of 3-D synchronous fluorescence and 3-D ordinary fluorescence

    Table  1   Features of fluorescence spectra

    pigment effective excitation wavelength range/nm optimum excitation wavelength/
    nm
    fluorescence emission wavelength range/
    nm
    fluorescence peak wavelength/
    nm
    carmine 260~350 336 400~510 450
    sunset yellow 264~308 288 380~470 418
    下载: 导出CSV

    Table  2   Relative error and predicted concentration of carmine by 3-D synchronous fluorescence using RBF

    actual concentration/
    (μg·mL-1)
    predicted concentration of synchronous fluorescence/
    (μg·mL-1)
    predicted concentration of three dimensional fluorescence/
    (μg·mL-1)
    relative error of synchronous fluorescence prediction/
    %
    relative error of three dimensional fluorescence prediction/
    %
    2.04 2.014 2.150 -1.28 5.37
    2.04 2.049 1.655 0.45 18.88
    2.72 2.613 2.687 -3.93 -1.22
    3.20 3.069 3.294 -4.11 2.95
    3.52 3.408 3.133 -3.18 -11.00
    3.76 3.776 3.896 0.43 3.61
    3.82 3.822 3.793 0.05 0.70
    4.3 4.362 3.453 1.44 -19.70
    4.36 4.270 4.674 -2.08 7.19
    4.52 4.197 5.434 -7.16 20.22
    4.80 4.832 4.534 0.67 -5.55
    5.26 4.760 3.315 -9.51 -36.98
    average relative error/% 2.86 11.12
    下载: 导出CSV
  • [1]

    NATIONAL HEALTH AND FAMILY PLANNING COMMISSION OF THE PEOPLE'S REPUBLIC OF CHINA.GB2760-2011 National food safety standards-standards for uses of food additives [S].Beijing: Standards Press of China, 2011: 8-179(in Chinese).

    [2]

    CHEN G Q. Studies on application of fluorescence spectroscopy in food safety supervision[D]. Wuxi: Jiangnan University, 2010: 1-2 (in Chinese).

    [3]

    VAVROUS A, VAPENKA L, SOSNOVCOVA J, et al. Method for analysis of 68 organic contaminants in food contact paper using gas and liquid chromatography coupled with tandem mass spectrometry[J]. Food Control, 2016, 60:221-229. DOI: 10.1016/j.foodcont.2015.07.043

    [4]

    XIA L Y, HAN Y Y, KUANG L H, et al. Simultaneous determination of basic orange 2, metanil yellow, tartrazine, sunset yellow in bean-product and acid orange Ⅱ, ponceau 2R, rhodanmine B in chili powder by thin-layer chromatographic scanning [J]. Chinese Journal of Analysis Laboratory, 2010, 29(6):15-18(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201006004

    [5]

    TANG T X, XU X J, WANG D M, et al. A rapid and green limit test method for five synthetic colorants in foods using polyamide thin-layer chromatography[J]. Food Analytical Methods, 2015, 8(2):459-466. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=269e8e9d95c32d411eae82f5b1da455d

    [6]

    VLAJKOVIC J, ANDRIC F, RISTIVOJEVIC P, et al. Development and validation of a tlc method for the analysis of synthetic food-stuff dyes[J]. Journal of Liquid Chromatography & Related Technologies, 2013, 36(17):2476-2488. DOI: 10.1080/10826076.2013.790771

    [7]

    BLAZHEYEVSKIY N Y, LABUZOVA Y Y. Determination of cefazolin by oscillographic polarography as its S, S'-dioxide[J]. Journal of Analytical Chemistry, 2014, 69(9):883-886. DOI: 10.1134/S106193481407003X

    [8]

    JIANG Zh L, LI F, LIANG H. Resonance scattering spectroscopic study of the system of PMo12 heteropoly acid and rhodamin S[J]. Acta Chimica Sinica, 2000, 58(8):1059-1062(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-HXXB200008023.htm

    [9]

    MEI F, ZHAO X Y, QU F. Comparison of interaction between cytochrome c and single strain deoxyribonucleic acid pools based on capillary electrophoresis[J]. Chinese Journal of Chromatography, 2012, 30(12):1229-1234(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sp201212004

    [10]

    REFINETTI P, MORGENTHALER S, EKSTROM P O. Cycling temperature capillary electrophoresis: Aquantitative, fast and inexpensive method to detect mutations in mixed populations of human mitochondrial DNA[J]. Mitochondrion, 2016, 29:65-74. DOI: 10.1016/j.mito.2016.04.006

    [11]

    ZHENG C Y, GUO Zh H, JIN L. Measurement of total viable count on chilled mutton surface based on hyperspectral imaging technique[J]. Laser Technology, 2015, 39(2):284-288(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/spgykj201420016

    [12]

    WANG X J, YANG L, LIU D L, et al. Determination of vanillic acid in rhizoma picrorhizae and body fluids by excitation-emission matrix fluorescence coupled with second-order calibration methods[J].Journal of Heibei Normal University(Natural Science Edition), 2016, 40(5):412-417(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-HBSZ201605008.htm

    [13]

    MAO L X, ZHANG X L, FAN S H. Determination of content of raw juice in orange juice by synchronous fluorescence spectrometry[J]. Science and Technology of Food Industry, 2016, 37(6):90-93(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/spgykj201606020

    [14]

    WANG Sh T, CHEN D Y, WANG X L, et al. Detection of polycyclic aromatic hydrocarbons combining fluorescence analysis with ABC-BP neural network [J]. Chinese Journal of Lasers, 2015, 42(11):1115001(in Chinese). DOI: 10.3788/CJL

    [15]

    XU J G, WANG Z B. Fluorescence spectroscopy [M]. 3rd ed. Beijing: Science Press, 2006: 131-160(in Chinese).

    [16]

    KUMAR K, MISHRA A K. Parallel factor (PARAFAC) analysis on total synchronous fluorescence spectroscopy (TSFS) data sets in excitation-emission matrix fluorescence (EEMF) layout: Certain practical aspects[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 147:121-130. DOI: 10.1016/j.chemolab.2015.08.008

    [17]

    LIU B, GUO H X. MATLAB neural network super learning handbook[M]. Beijing: Beijing University of Posts and Telecommunications Press, 2014: 194-216(in Chinese).

    [18]

    SHI F, WANG X C, YU L, et al. 30 case analysis of MATLAB neural network[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2011: 65-73(in Chinese).

    [19]

    LI R, CHEN G Q, ZHU C, et al. Quantitative analysis of two food colours using excitation-emission matrix spectra coupled with parallel factor algorithm[J]. Spectroscopy and Spectral Analysis, 2014, 34(1):111-115(in Chinese). http://europepmc.org/abstract/med/24783544

    [20]

    KONG F B. The study of the synchronous fluorescence of several food colors[D].Wuxi: Jiangnan University, 2013: 31-43(in Chinese).

  • 期刊类型引用(3)

    1. 刘沐涵,陈国庆,肖榕阳,徐煜杰,陈哲涵,蔡纪元. 基于3维荧光光谱技术的含乳饮料分类研究. 激光技术. 2021(03): 303-306 . 本站查看
    2. 廖彩淇,孙长虹,杨潇,靳皓,董虹余,杨仁杰. 紫外吸收和荧光光谱检测红茶中的胭脂红色素. 食品工业. 2019(03): 296-299 . 百度学术
    3. 宋鑫澍,陈国庆,朱焯炜,马超群,朱纯,张笑河,刘怀博,朱从海. 3维荧光光谱测定白酒年份酒中乙酸的体积分数. 激光技术. 2018(04): 531-535 . 本站查看

    其他类型引用(1)

图(3)  /  表(2)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 4
出版历程
  • 收稿日期:  2016-09-13
  • 修回日期:  2016-10-26
  • 发布日期:  2017-07-24

目录

/

返回文章
返回