Technology of femtosecond time resolution mass spectroscopy and its applications in ultrafast dynamics
-
摘要: 飞秒时间分辨质谱技术是飞秒抽运-探测技术与飞行时间质谱技术的结合。可以测得在不同抽运-探测时间延迟下,分子电子激发态电离或解离而来的离子质谱; 不同抽运-探测时间延迟下,质谱信号强弱的变化反映了激发态布居数的时态信息; 给出了分子激发态和里德堡态中准确的寿命信息、分子激发态势能面非绝热耦合信息以及分子过渡态信息。介绍了飞秒时间分辨质谱技术在分子激发态研究中的最新应用进展,以及在里德堡态解离、异构化、内转换、系间交叉等超快动力学过程研究中的最新进展。指出飞秒时间分辨质谱技术将在一些新现象的研究中发挥重要的作用。Abstract: Femtosecond time-resolved mass spectrometry is the combination of femtosecond pump-probe technique and flight time mass spectrometry. By the technology, ion mass spectra from ionization or dissociation of the molecules excited state can be measured under different pump-probe time delays. The temporal information of the population of the excited states varies with the change of the strength of mass spectra. Some information is given, such as:the accurate lifetime of the excited state and Rydberg state, coupling information of potential energy surface and non adiabatic of molecular excited state, and excessive state information. The application of femtosecond time-resolved mass spectrometry in ultrafast dynamics process is introduced, such as:recent advances of molecular excited states and the latest progress of Rydberg state for dissociation, isomerization, conversion, and system cross. And it is pointed out that femtosecond time-resolved mass spectrometry will play an important role in the study of some new phenomena.
-
-
[1] EYRING H. The activated complex in chemical reactions. Journal of Chemical Physics, 1934, 3(2):107-115. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_b4d1f767b160066003d24e914499c1a5
[2] ZEWAIL A H. Femtochemistry: Atomic-scale dynamics of the chemical bond. The Journal of Physical Chemistry, 2000, A104(24): 5660-5694. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024417538/
[3] KHUNDKAR L R, ZEWAIL A H. Picosecond mpi mass spectrometry of CH3I in the process of dissociation. Chemical Physics Letters, 1987, 142(6): 426-432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f5Z1rPAaXFrEu5Tl/daCOmPb+93osUUDtOipMbHsFA0=
[4] CORRALES M E, LORIOT V, ZEWAIL A H. Structural dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction. Physical Chemistry Chemical Physics, 2013, 16(19):8812-8818. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef774fb6edb92cbfb4c7a4a8a5dc8372
[5] YU H. Study on measurement of femtosecond laser pulse width. Laser Technology, 2013, 37(5):679-681(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201305026.htm
[6] YANG M H, JIN Q, LIU J S, et al. CO molecular orientation controlled by combination of chirped THz pulse and femtosecond laser pulse. Laser Technology, 2015, 39(6):735-740(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201506001
[7] VALDMANIS J A, FORK R L, GORDON J P.Generation of optical pulse as short as 27 femtoseconds directly from alaser balancing self -phase modulati on group -velocity dispersion saturable absorption, and saturablegain.Optics Letters, 1985, 10(3):131-133.
[8] HE Y X, MU B L, LI J, et al.Relationship between Gaussian beam quality and wavefront aberration. Laser Technology, 2014, 38(6):747-752(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201406006
[9] LUDOWISE P, BLACKWELL M, CHEN Y. Femtosecond time-resolved mass and photoelectron spectroscopic study of OC10 photodissociation. Coherent energy transfer in a stepwise reaction. Chemical Physics Letters, 1997, 273(3/4):211-218. http://www.sciencedirect.com/science/article/pii/S0009261497005265
[10] HO J W, CHEN W K, CHENG P Y. A direct observation of a concerted two-bond breaking reaction. Journal of the American Chemical Society, 2007, 129(25): 3748-3785. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b97d783637565c9fbdd3cff3aab8cab
[11] HO J W, CHEN W K, CHENG P Y. Unraveling complex three-body photodissociation dynamics of dimethyl sulfoxide: a femtosecond time-resolved spectroscopic study. Journal of Physical Chemistry, 2008, A112(40): 10453-10468. http://www.ncbi.nlm.nih.gov/pubmed/18826199
[12] CHEN W K, HO J W, CHENG P Y. Ultrafast photodissociation dynamics of acetone at 195nm: Ⅱ initial state, intermediate, and product temporal evolutions by femtosecond mass-selected multiphoton ionization spectroscopy. Journal of Physical Chemistry, 2005, A109(34): 6805-6817. http://www.ncbi.nlm.nih.gov/pubmed/16834036
[13] CHEN W K, CHENG P Y. Ultrafast photodissociation dynamics of acetone at 195nm: Ⅱ unraveling complex three-body dissociation dynamics by femtosecond time-resolved photofragment translational spectroscopy. Journal of Physical Chemistry, 2005, A109(34): 6818-6829. DOI: 10.1021/jp0509717
[14] GITZINGER G, CORRALES M E, LORIOT V. A femtosecond velocity map imaging study on B-band predissociation in CH3I. Ⅰ. The band origin. The Journal of Chemical Physics, 2010, 132(23): 234313. DOI: 10.1063/1.3455207
[15] ZHANG R R, SHEN H, QIN C C, et al. Ultrafast dissociation dynamics of acrylic acid studied with femtosecond pump-probe technique. Acta Physico-Chimica Sinica, 2012, 28(3):522-527. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201203003
[16] XU Y Q, QIU X J, ABULIMITI B, et al. Energy transfer of ethyl iodine studied by time-resolved photoelectron imaging. Chemical Physics Letters, 2012, 554(12):53-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9684d61a2dc26892567d8bb10285ae76
[17] LIU Zh M, WANG Y M, ZHANG B, et al. Photodissociation dynamics of 2-iodotoluene investigated by femtosecond time-resolved mass spectrometry. Chinese Journal of Chemical Physics, 2016, 29(1):53-58. http://d.old.wanfangdata.com.cn/Conference/8777431
[18] POULLAIN S M, SAMARTZIS P C, KITSOPOULOS T N. New insights into the photodissociation of methyl iodide at 193nm: stereodynamics and productbranching ratios. Physical Chemistry Chemical Physics, 2015, 17(44): 29958-29968. DOI: 10.1039/C5CP04850H
[19] ABULIMITI B, QIU X J, DING Z H, et al. Studies on ultrafast dynamic of 3-picoline with femtosecond time-resolved photoelectron imaging. Acta Physico-Chimica Sinica, 2014, 30(1): 22-27. http://www.en.cnki.com.cn/Article_en/CJFDTotal-WLHX201401003.htm
[20] NOLLER B, POISSON L, MAKSIMENKA R, et al. Femtosecond dynamics of isolated phenylcarbenes. Journal of the American Chemical Society, 2008, 130(45): 14908-14909. DOI: 10.1021/ja804133c
[21] FUSS W, SCHMID W E, TRUSHIN S A. Ultrafast dynamics of cyclohexene and cyclohexene-d10 excited at 200nm. Journal of the American Chemical Society, 2001, 123(33): 7101-7108. DOI: 10.1021/ja004115e
[22] FUSS W, SCHMID W E, TRUSHIN S A. Time-resolved dissociative intense-laser field ionization for probing dynamics: Femtosecond photochemical ring opening of 1, 3-cyclohexadiene. The Journal of Chemical Physics, 2000, 112(19): 8347-8362. DOI: 10.1063/1.481478
[23] WU G R, NEVILLE S P, SCHALK O. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study. The Journal of Chemical Physics, 2015, 142(7): 074302. DOI: 10.1063/1.4907529
[24] MONTERO R, CONDE A P, OVEJAS V, et al. Ultrafastphotophysics of the isolated indole molecule.Journal of Physical Chemistry, 2012, A116(11): 2698-2703. http://europepmc.org/abstract/MED/22050115
[25] LIU Y Z, TANG B F, SHEN H, et al. Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging. Optics Express, 2010, 18(10): 5791-5801. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001866269
[26] DING Z H, QIU X J, XU Y Q, et al.Ultrafast internal conversion dynamics of benzyl chloride by femtosecond time-resolved photoelectron imaging. Acta Physico-Chimica Sinica, 2012, 28(12): 2761-2766. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205757122
[27] HORIO T, SPESYVTSEVJ R, SUZUKI T. Full observation of ultrafast cascaded radiationless transitions from S2 state of pyrazine using vacuum ultraviolet photoelectron imaging.The Journal of Chemical Physics, 2016, 145(4): 044306. DOI: 10.1063/1.4955296
[28] SUZUKI T, WANG L, KOHGUCHI H. Femtosecond time-resolved photoelectron imaging on ultrafast electronic dephasing in an isolated molecule. The Journal of Chemical Physics, 1999, 111(11): 4859-4861. DOI: 10.1063/1.479822
[29] QIU X J, QIN C C, WANG J, et al.Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states. Physical Review, 2012, A86(3): 032505. DOI: 10.1103/PhysRevA.86.032505
[30] LUCAS M, LIU Y, BRYANT R, et al. Vacuum ultraviolet photodissociation dynamics of methanol at 121.6. Chemical Physics Letters, 2015, 619(1):18-22. http://www.sciencedirect.com/science/article/pii/S0009261414009646
[31] FARMANARA P, STERT V, RADLOFF W. Ultrafast photodissociation dynamics of acetone excited by femtosecond 155nm laser pulses. Chemical Physics Letters, 2000, 320(6): 697-702. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5e45e3ac947e8f4fb626329372d23609
[32] TIMMERS H, SHIVARAM N, SANDHU A. Ultrafast dynamics of neutral superexcited oxygen: A direct measurement of the competition on between autoionization and predissociation. Physical Review Letters, 2012, 109(17): 173001. DOI: 10.1103/PhysRevLett.109.173001
[33] SPESYVTSEVJ R, HORIO T, SUZUKI T. Excited-state dynamics of furan studied by sub-20fs time-resolved photoelectron imaging using 159nm pulses. The Journal of Chemical Physics, 2015, 143(1): 014302. http://europepmc.org/abstract/MED/26156478