-
等离子体信号的辐射强度与等离子体的温度T和电子密度有很大关系。在等离子体局部热平衡的条件下,测量谱线强度后,则可以利用Boltzmann曲线法得到等离子体温度[14]。现选取同一通道内的4条Ca原子谱线,从美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)[15]数据库中查得的具体参量(包括跃迁几率An、上能级权重因子gn、能级的激发能量En,n表示电子跃迁的能级)如表 1所示。
Table 1. Spectral line parameters of Ca element
wavelength/nm An/108s-1 gn En/eV 315.9 3.10 4 7.047168 317.9 3.60 6 7.049550 393.4 1.47 4 3.150984 396.9 1.40 2 3.123349 通过对数据处理,计算得到等离子体温度与煤粉粒径的关系如图 2所示。由图 2中可以看出,随着煤粉粒径的增大,等离子体的温度则不断下降。由计算得知,与粒径为D6(250μm~300μm)的煤粉颗粒流等离子体温度相比,粒径分别为D1(小于50μm), D2(50μm~100μm), D3(100μm~150μm), D4(150μm~200μm), D5(200μm~250μm)的煤粉颗粒流等离子体温度分别升高了13.13%, 12.67 %, 9.48%, 3.11%, 0.98%。而在煤粉粒径为D3(100μm~150μm)处等离子温度升高速度最快。
等离子体光谱谱线宽度是等离子体电子密度的函数,其中谱线宽度又与电子展宽和离子展宽有关。由于粒子间相互碰撞形成的Stark宽度决定了离子体的主要光谱线宽,所以作者选用Stark展宽来计算电子密度,其公式如下:
$ \Delta {\lambda _{1/2}} = 2\omega (\frac{N}{{{{10}^{16}}}}) $
(1) 式中,Δλ1/2为特征谱线的半峰全宽;ω为电子碰撞系数;N为电子密度。其中ω通过查询参考文献[16]可知。选用C 247.85nm的原子谱线,计算出激光诱导等离子体的电子密度,如图 3所示。从图 3中可以看出, 随着煤粉粒径的增大,等离子体的电子密度不断下降。与粒径为D6(250μm~300μm)的煤粉颗粒流等离子电子密度相比,粒径为D1(小于50μm)的电子密度高了19.89%。因为随着煤粉粒径变小,单位面积内被激发的煤粉颗粒数量成倍增加,激发有效性升高;同时颗粒间隙变小,有利于热量在等离子体内部扩散,加速自由电子的活动使电离的原子、分子数目增多,电子密度变大。
-
为了定量描述等离子体的光谱强度与煤粉粒径的关系,作者选取其中代表性元素C 247.85nm, Mg 285.27nm, Si 288.15nm, Al 309.27nm 4种元素的特征光谱作为元素分析谱线,绘制激光等离子体发射光谱强度在煤粉粒径为D1(小于50μm), D2(50μm~100μm), D3(100μm~150μm), D4(150μm~200μm), D5(200μm~250μm), D6(250μm~300μm)条件下的变化曲线。
由于测量过程中存在着由激光波动、样品成分分布不均等因数造成的数据波动,所以本文中采用均值法对数据进行处理,将150个数据的均值作为一个数据点来分析。分析得到在不同粒径条件下4种元素的光谱强度如图 4所示。
由于不同元素的光谱强度差异过大,为同图显示多个元素的光谱强度,特做成柱状图。从图中可知,随着粒径的减小,各个元素的光谱强度也随之增大,当煤粉粒径为D2(50μm~100μm)时,C, Mg, Si, Al元素特征光谱强度达到最大,当粒径再减小时,光谱强度反而变小。分析认为,随着粒径的不断减小,形成样品的等离子体密度增强,光谱强度增加,当粒径减小到一定程度后,元素的光谱强度趋于饱和,当粒径再减小时,样品等离子体及烧蚀过程中形成的蒸发物质尤其是灰尘对后继入射激光的吸收、反射、散射作用增强,使光谱强度减弱。
-
检出限(limit of detection, LOD)是光谱检测方法灵敏度体现的重要指标之一。根据国际理论(化学)与应用化学联合会(International Union of Pure and Applied Chemistry,IUPAC)的规定,元素分析的检出限的计算公式为:
$ {L_{{\rm{LOD}}}} = \alpha \cdot {S_{\rm{b}}}/S $
(2) 式中,S是校正曲线的斜率,Sb是对光谱背景信号进行多次测量的标准偏差,α是常量,一般取值为3。因为不同元素的检出限差异很大,为便于同图分析,将各粒径下各元素检出限与粒径小于50μm的对应元素检出限进行对比。由于正比于谱线强度,因此在对比分析中可认为元素分析的检出限为LLOD=α·Sb/I。则通过计算各样品30次激发时的各元素特征光谱强度Sb/I值,就可以比较不同粒径条件下样品的各元素检出限的大小,结果如图 5所示。随着煤粉颗粒流粒径的增大,分析元素C, Si, Mg, Al的检出限变化趋势相同,先降低后升高,在粒径为D2(50μm~100μm)时,检出限达到最低。此时,最有利于煤粉样品中元素检测。
-
结合图 2、图 3和图 4,随着煤粉粒径的减小,等离子体温度和电子密度都不断增大,而光谱强度在增大到一定程度后反而减小。由等离子体原子发射光谱强度理论,可知当电子从高能级p向低能级q跃迁时,产生的发射光谱强度为:
$ {I_{pq}} = {A_{pq}}h{\nu _{pq}}\frac{{{g_p}}}{{{g_o}}}{N_0}{{\rm{e}}^{\frac{{ - {E_p}}}{{kT}}}} $
(3) 式中,Apq表示从p能级向q能级跃迁的跃迁几率; h为普朗克常数; ν为谱线频率; gp和go分别为激发态与基态的统计权重; Ep为激发能量; k为玻尔兹曼常数。通过公式可以得知,激发的自由粒子数量N0和等离子体温度T与发射光谱强度成正相关。当等离子体温度较低时,等离子体温度变化对光谱强度的大小起主要作用;当等离子温度达到一定值以后,激发的粒子数量对光谱强度的大小起主要作用。随着煤粉粒径减小,激发的粒子数量反而增加,则等离子体温度升高、电子密度增加,致使光谱强度不断增强。随着电子密度增大,等离子体的共振频率也越大,当等离子体共振频率大于激光频率时,等离子体对激光的反射、屏蔽作用大大加强,导致激发形成等离子体总数量减小。所以当煤粉粒径进一步减小时,等离子体的电子密度增强,此时高温高速的原子,分子碰撞进一步加剧,使温度上升,但由于等离子体的反射,屏蔽作用使后继激光作用在样品表明的有效性降低,使激发的总粒子数量下降,此时,温度升高对光谱强度的增加作用小于激发粒子减少对光谱强度的削弱作用。因此,光谱强度总体呈现下降趋势。
粒径对激光诱导煤粉流等离子体特性的影响
Influence of particle size on plasma characters of laser-induced pulverized coal flow
-
摘要: 为了明确在应用激光诱导击穿光谱技术进行煤粉流物质成分在线检测过程中,煤粉粒径大小对激光诱导煤粉流等离子体特性的影响,利用螺杆给料机搭建煤粉颗粒流检测平台,分析了粒径不同的6种煤粉流等离子体的光谱数据。结果表明,在相同的实验条件下,随着煤粉颗粒粒径减小,等离子体的电子密度和温度升高,粒径小于50μm与粒径为250μm~300μm的样品的等离子体电子密度和温度分别升高了19.89%和13.13%;煤粉粒径大小对激光诱导煤粉流等离子体特性有很大影响,选取合适的煤粉粒径不仅可以提高光谱强度而且元素检出限也得到改善,更有利于检测样品中含量低的元素。Abstract: In order to further clarify the influence of pulverized coal particle size on the laser-induced plasma flow characteristics in the process of detecting the composition of pulverized coal by using laser induced breakdown spectroscopy, the screw feeder was used to build coal particle flow detection platform. Spectral datas of 6 kinds of pulverized coal flow plasmas with different particle sizes were analyzed. Under the same experimental conditions, the electron density and temperature of plasma would increase with the decrease of coal particle size. The electron density and temperature of plasma were increased by 19.89% and 13.13% respectively when the sample sizes were < 50μm and 250μm~300μm correspondingly. The results show that, the particle size of pulverized coal has a great influence on the plasma characteristics of laser induced pulverized coal flow. Choosing the appropriate size of pulverized coal can not only improve the spectral intensity but also improve the elements detection limit. It is more favorable for the detection of the low content of elements in the sample.
-
Table 1. Spectral line parameters of Ca element
wavelength/nm An/108s-1 gn En/eV 315.9 3.10 4 7.047168 317.9 3.60 6 7.049550 393.4 1.47 4 3.150984 396.9 1.40 2 3.123349 -
[1] ZHAO Y, WU B, JIA F. Research on detection method of coal ash content based on LIBS[J]. Coal Engineering, 2014, 46(10):208-210(in Chinese). [2] VESTIN F, RANDELIUSM, BENGTSON A. Laser induced breakdown spectroscopy applied on low-alloyed zinc sample[J]. Spectrochimica Acta, 2010, B65(8): 721-726. [3] XIE Ch L, LU J D, LI J, et al. Matrix effect on Laser-induced breakdown spectroscopy of fine coal[J].Journal of Engineering Thermophysics, 2008, 29(2):331-334(in Chinese). [4] YAO S C, LU J D, LU Z M, et al.Influence of sample morphology on laser ablation properties of coal[J]. Acta Optica Sinica, 2009, 29(4): 1126-1130(in Chinese). doi: 10.3788/AOS [5] WALLIS F J, CHADWICK B L, MORRISON R, et al. Analysis of lignite using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2000, 54(8): 1231-1235. doi: 10.1366/0003702001950814 [6] GAFT M, DVIR E, MODIANO H, et al. Laser induced breakdown spectroscopy machine for online ash analyses in coal[J]. Spectroscopy Acta, 2008, B63(10): 1177-1182. [7] NICOLAS G, CTVRTNICKOVA T, MATEO M P, et al. Laser induced breakdown spectroscopy application for ash characterization for a coal fired power plant[J]. Spectrochimica Acta, 2010, B65(8): 734-737. [8] NICOLAS G, CTVRTNICKOVA T, MATEO M P, et al. Analytical capability of LIBS method for carbon detection[J].Journal of Optoelectronics and Advanced Materials, 2010, 12(3):668-673. [9] ZHENG J P, LU J D, ZHANH B, et al. Study of laser energy in multi-element detection of pulverized coal flow with laser-induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 221-225(in Chinese). [10] ZHANG X, LU J D, PAN G, et al. Investigation on laser-induced coal particle flow plasma properties acquired with different collection angles[J]. Spectroscopy and Spectral Analysis, 2013, 33(6): 1473-1476(in Chinese). [11] LUO J, LU J D, LU W, et al. Excitation characteristics of pulverized coal flow under different depth of focus position[J]. High Power Laser and Particle Beams, 2013, 25(10):2682-2686(in Chinese). doi: 10.3788/HPLPB [12] CHEN S H, LU J D, DONG X, et al.Study on properties of laser-induced coal particle flow plasma with different laser parameters[J]. Infrared and Laser Engineering, 2014, 43(1):113-118(in Chinese). [13] LI Y H, DONG J X, FENG Z X, et al. Study on characteristic of element change of pulverized coal in different granularity[J]. Proceedings of the CSEE, 2007, 27(23): 7-11(in Chinese). [14] LU T X, LU Y Q. The principle and application of laser spectral technology[M]. Hefei: University of Science and Technology of China Press, 2009:8-42 (in Chinese). [15] THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY(NIST). Atomic spectra database[DB/OL].(2012-12-17)[2016-02-01].http://www.nist.gov/pm//data/asd.cfm,2012-12-17.INEW.html. [16] GRIEM H R. Plasma spectroscopy[M]. New York, USA: MCG raw Hill, 1964: 483.