-
CCD按入射光线方向组成材料依次为微透镜、SiO2增厚层、金属遮光Al膜层、SiO2绝缘层、基底Si[13]。构成微透镜的主要材料为聚酰亚胺(polyimide,PI),材料PI及SiO2对1.06μm的激光吸收率几乎为0,全部光能被微透镜通过金属层开口聚焦到基底Si表面,金属层不受激光辐照。基底Si对1.06μm的激光有较强的吸收率η=67%,因此可以将激光辐照CCD看成是CCD基底Si上加了一个热源。基于这种思想,对CCD进行简化,并进行理论分析与仿真。将CCD简化为圆形结构靶材,如图 1所示。
-
假设各层材料均为各向同性均匀,热传导和热弹性耦合的基本方程组可描述为[3]:
$ {\rho _j}{c_j}\frac{{\partial {T_j}}}{{\partial t}} - {\kappa _j}{\nabla ^2}{T_j} = {Q_j} $
(1) $ {D_j} = \frac{{{\kappa _j}}}{{{\rho _j}{c_j}}} $
(2) $ \begin{array}{*{20}{c}} {{\nabla ^2}{u_{rj}} - \frac{{{u_{rj}}}}{{{r^2}}} + \frac{1}{{1 - 2{\mu _j}}}\frac{{\partial {\varepsilon _j}}}{{\partial r}} - }\\ {\frac{{2\left( {1 + {\mu _j}} \right)}}{{1 - 2{\mu _j}}}{\beta _j}\frac{{\partial {T_j}}}{{\partial r}} = 0} \end{array} $
(3) $ {\nabla ^2}{u_{zj}} + \frac{1}{{1 - 2{\mu _j}}}\frac{{\partial {\varepsilon _j}}}{{\partial z}} - \frac{{2\left( {1 + {\mu _j}} \right)}}{{1 - 2{\mu _j}}}{\beta _j}\frac{{\partial {T_j}}}{{\partial z}} = 0 $
(4) 式中, Tj为第j层材料在t时刻的温度分布;ρj,cj,κj和Dj分别表示材料的密度、比热容、导热系数和热扩散率;Qj是体热源,表示激光作用下材料所吸收的激光能量;urj和uzj分别表示位移在径向和轴向上的分量;εj, μj, βj分别表示体应变、泊松比和材料的热膨胀系数;j=PI,Ot,M,Oi,Si, 分别表示微透镜、SiO2增厚层、金属遮光层、SiO2绝缘膜层、基底Si。其中Qj可以表示成以下形式[14]。
(1) 当为基底Si层时,激光能量在Si表面被吸收,可简化看成基底Si层上表面有一热源,这样QSi就可改为边界条件中面热源来表示:
$ - {\kappa _{{\rm{Si}}}}\frac{{\partial {T_{{\rm{Si}}}}}}{{\partial z}} + {D_{{\rm{Si}}}}{T_{{\rm{Si}}}} = {\eta _{{\rm{Si}}}}{I_0}\exp \left( {\frac{{ - {r^2}}}{{{w^2}}}} \right),\left( {z = 0} \right) $
(5) 式中, ηSi表示基底Si对激光的吸收率,I0表示激光光斑中心的功率密度,w表示高斯光斑的束腰半径,r表示考察点到光斑中心的径向距离。
(2) 当为其它层时,热量是从基底Si层上表面热传导来的,因此对应的边界条件为:
$ - {\kappa _{{\rm{Si}}}}\frac{{\partial {T_{{\rm{Si}}}}}}{{\partial z}} = - {\kappa _{{{\rm{O}}_{\rm{i}}}}}\frac{{\partial {T_{{{\rm{O}}_{\rm{i}}}}}}}{{\partial z}},\left( {z = 0,{T_{{\rm{Si}}}} = {T_{{{\rm{O}}_{\rm{i}}}}}} \right) $
(6) $ - {\kappa _{{{\rm{O}}_{\rm{i}}}}}\frac{{\partial {T_{{{\rm{O}}_{\rm{i}}}}}}}{{\partial z}} = {\kappa _{\rm{M}}}\frac{{\partial {T_{\rm{M}}}}}{{\partial z}},\left( {z = {h_{{{\rm{O}}_{\rm{i}}}}},{T_{{{\rm{O}}_{\rm{i}}}}} = {T_{\rm{M}}}} \right) $
(7) $ - {\kappa _{\rm{M}}}\frac{{\partial {T_{\rm{M}}}}}{{\partial z}} = {\kappa _{{{\rm{O}}_{\rm{i}}}}}\frac{{\partial {T_{{{\rm{O}}_{\rm{i}}}}}}}{{\partial z}},\left( {z = {h_{{{\rm{O}}_{\rm{i}}}}} + {h_{\rm{M}}},{T_{\rm{M}}} = {T_{{{\rm{O}}_{\rm{i}}}}}} \right) $
(8) $ \begin{array}{*{20}{c}} { - {\kappa _{{{\rm{O}}_{\rm{t}}}}}\frac{{\partial {T_{{{\rm{O}}_{\rm{t}}}}}}}{{\partial z}} = {\kappa _{{\rm{PI}}}}\frac{{\partial {T_{{\rm{PI}}}}}}{{\partial z}},}\\ {\left( {z = {h_{{{\rm{O}}_{\rm{i}}}}} + {h_{\rm{M}}} + {h_{{{\rm{O}}_{\rm{t}}}}},{T_{{{\rm{O}}_{\rm{t}}}}} = {T_{{\rm{PI}}}}} \right)} \end{array} $
(9) $ \begin{array}{*{20}{c}} { - {\kappa _{{\rm{PI}}}}\frac{{\partial {T_{{\rm{PI}}}}}}{{\partial z}} = K\left( {{T_{{\rm{PI}}}} - {T_{{\rm{air}}}}} \right) + {\alpha _{{\rm{PI}}}}\sigma \left( {{T_{{\rm{PI}}}}^4 - {T_{{\rm{air}}}}^4} \right),}\\ {\left( {z = {h_{{{\rm{O}}_{\rm{i}}}}} + {h_{\rm{M}}} + {h_{{{\rm{O}}_{\rm{t}}}}} + {h_{{\rm{PI}}}}} \right)} \end{array} $
(10) 式中, hj(j=Si, Oi, M, Ot, PI)表示各层材料的厚度,K表示外表面和空气的对流传热系数,αPI为微透镜的发射率,σ为黑体辐射常数,Tair为环境温度。为了得到激光辐照CCD的温度场及应力场,采用有限元法能有效地处理各种复杂边界条件。
-
根据上述理论模型,使用波长为1.06μm、功率0.5W的连续激光对CCD进行照射,光斑半径a=1mm,光斑的功率密度分布如图 2所示。初始环境温度Tair=300K,CCD底部为固定约束,并假设底部绝热,四周与空气形成对流,对流传热系数K=5W/(m2·K)。激光辐照下,把CCD内各材料间的辐射换热看成是热传导的一部分,而设CCD向外界辐射换热主要由最上层上表面进行,且辐射能量主要集中在红外波段,忽略其它波段的辐射能量损失。当激光辐照开始时,主要由微透镜上表面进行辐射换热,当微透镜层达到一定温度发生热分解后,辐射换热由SiO2增厚层上表面与环境进行。组成CCD的各种材料参量见表 1。
parameter PI Al SiO2 Si density ρj/ (kg·m-3) 1.53×103 2.7×103 2.64×103 2.52×103 thermal conductivity κj/(W·m-1·K-1) 0.12 238 1.3 156 melting point Tm, j/℃ 500(pyrolysis) 660 1700 1412 specific heat capacity cj/(J·kg-1·K-1) 1.09×103 1.05×103 841 1009 thermal expansion coefficient βj/K-1 2×10-5 2.29×10-5 5×10-7 2×10-5 Young’s modulus Ej/Pa 4×109 1.38×1011 8.7×1010 1.07×1011 Poisson’s ratio μj 0.3 0.33 0.16 0.28 thickness hj/μm 2 1 thickening 3.2 insulation 0.2 30 radius rj/mm 2.4 2.4 2.4 2.4 emissivity αj 0.521 — 0.985 — absorption rate of 1.06μm laser ηj — 0.06 — 0.67 -
图 3为CCD在激光辐照时刻t=3.4s时的温度分布图。由图可知,温升从激光光斑中心向靶材边缘递减,而沿轴向变化不大,沿径向有大约6℃的温差。因此,研究CCD的热损伤时可以计算CCD的平均温度。
图 4为CCD的平均温度与辐照时间的关系。由图可知,随着辐照时间的增加,温升逐渐增加,但是增速逐渐趋缓。这是因为随着CCD整体的温度升高,辐射换热量也逐渐增大,能量损耗的加大使温度曲线呈现为“上凸”式上升,当t=3.4s,CCD温度达到500℃,微透镜热分解,假设PI全部分解,忽略其分解作用时间。微透镜分解后聚光效应消失,激光透过SiO2增厚层照射到遮光Al膜上,一般Al膜开口率30%,也就是说激光能量的70%作用在Al膜上,其余30%继续作用在基底Si上。由于Al膜对该波段激光吸收率仅6%,激光的大部分能量被反射,CCD中整体的输入热源大幅降低,再加上SiO2增厚层的热辐射系数比PI高很多,所以温度曲线呈现“下凹”式走低,最终达到热输入和热损失相等的平衡,温度维持在295℃。通过温度场的仿真可以发现,功率0.5W、光斑半径1mm的连续激光对该CCD造成的热破坏是使微透镜热分解,其它材料因达不到熔点而未受熔融损伤。
-
图 5为CCD在激光辐照时刻t=3.4s时的应力及应变分布图。由图可知,在CCD的多层材料中,遮光Al膜层和基底Si层所受应力较大。图最大应力出现在基底Si下表面边缘处,由于是固定边界与自由边界的交汇处,受到CCD因温升而发生向上和向外的热膨胀所引起的应力同时作用。最小应力出现在SiO2增厚层的边缘。因此,判断CCD热应力破坏的位置应着重考虑基底Si下表面边缘处。
图 6a和图 6b分别表示材料内部最大的应力及材料交界面的应力随时间的变化。由图可知,CCD中各材料受到的最大应力均为压应力,主要是受热膨胀所致。其中以Si下表面边缘处所受应力最大,峰值达到4140MPa,可是Si的抗压强度有限,为120MPa[3],也就是说当激光作用0.1s左右时,基底Si固定边缘就出现了滑移,随着辐照时间增加,滑移位置向中心移动。由图 6b可知,材料交界面处以遮光Al膜与上下层的SiO2膜层间的拉应力为最大。由于Al膜和SiO2的附着力为100MPa左右[12],所以当激光作用0.3s时,由光斑中心开始,遮光Al膜和SiO2膜层发生分离,并向边缘扩散。
-
经以上分析,激光辐照首先使基底Si在固定底面边缘产生沿径向由外向内的滑移,紧接着遮光Al膜与SiO2膜层沿径向由内向外脱离,两种应力破坏可能伴随发生。遮光Al膜的脱离致使产生漏光现象,并且减少基底Si的向上热传导,减小了热量损失,加快了基底Si与固定底面的滑移分离。当基底Si完全脱落,离开光学系统的像面,整个系统将失效。
激光辐照CCD温度场与热应力场的研究
Research of temperature field and thermal stress field of CCD under laser irradiation
-
摘要: 为了研究了激光与CCD传感器的作用过程及损伤机理,采用有限元分析的方法,对波长1.06μm的连续激光辐照行间转移型面阵CCD进行了理论分析和仿真研究。以基底Si表面激光辐照区域为热源建立热力耦合模型,模拟得出了CCD的温度分布和热应力分布。通过对比分析其组成材料的温度损伤和应力损伤所发生的时间,发现应力损伤先于温度损伤。结果表明,作为固定边界和自由边界的交汇处,基底Si下表面边缘处热应力于激光作用0.1s时最先超过破坏阈值120MPa,发生应力破坏; Si材料产生由下表面边缘向中心的滑移,基底逐步脱离固定; 激光作用0.3s时,遮光Al膜与SiO2膜层也因热应力超过两种材料的附着力100MPa,而产生沿径向由内向外的Al膜层剥落的应力破坏行为,这种行为将加快基底Si材料的滑移,最终致使整个CCD因脱离工作位置而失效。该研究成果为CCD传感器的激光损伤及防护提供了理论依据。Abstract: In order to study interaction process and damage mechanism between laser and CCD sensors, an interline transfer surface array CCD irradiated by 1.06μm CW laser was analyzed and simulated by means of finite element analysis. Thermal coupling model was established by using laser irradiation area of substrate Si surface as heat source. The temperature distribution and thermal stress distribution of CCD were simulated. By comparing and analyzing temperature damage and stress damage of the components, it was found that stress damage was prior to temperature damage. The results show that as the convergence of the fixed boundary and the free boundary, the thermal stress at the edge of the lower surface of the base Si is the first to exceed the damage threshold of 120MPa at the time of laser action of 0.1s, and stress failure occurs. Si material slips from the lower surface edge to the center, and the substrate is gradually out of fix. At the time of laser action of 0.3s, stress failure occurs to Al film and SiO2 film and Al film strips radically from the inside to the outside due to thermal stress over the adhesion strength of 100MPa, finally the CCD is out of work position and fails. The research achievements provide theoretical basis for laser damage and protection of CCD sensors.
-
Key words:
- laser physics /
- laser damage /
- temperature field /
- thermal stress field /
- CCD
-
parameter PI Al SiO2 Si density ρj/ (kg·m-3) 1.53×103 2.7×103 2.64×103 2.52×103 thermal conductivity κj/(W·m-1·K-1) 0.12 238 1.3 156 melting point Tm, j/℃ 500(pyrolysis) 660 1700 1412 specific heat capacity cj/(J·kg-1·K-1) 1.09×103 1.05×103 841 1009 thermal expansion coefficient βj/K-1 2×10-5 2.29×10-5 5×10-7 2×10-5 Young’s modulus Ej/Pa 4×109 1.38×1011 8.7×1010 1.07×1011 Poisson’s ratio μj 0.3 0.33 0.16 0.28 thickness hj/μm 2 1 thickening 3.2 insulation 0.2 30 radius rj/mm 2.4 2.4 2.4 2.4 emissivity αj 0.521 — 0.985 — absorption rate of 1.06μm laser ηj — 0.06 — 0.67 -
[1] LIU G H. Research on the TV tracking system technology[D]. Nanjing: Nanjing University of Science and Technology, 2013: 1-2(in Chinese). [2] ZHANG L P. The hardware design and realization of TV tracking[D]. Wuhan: Wuhan University of Science and Technology, 2008: 1-2(in Chinese). [3] BI J, ZHANG X H, NI X W. Mechanism for long pulse laser-induced hard damage to the MOS pixel of CCD image sensor[J]. Acta Physica Sinica, 2011, 60(11):114210(in Chinese). [4] ZHANG D Y, ZHAO J H, WANG W P, et al. Study of disturance to visible-light array CCD detectors irradiated by 1.319μm CW YAG laser[J].High Power Laser and Particle Beams, 2003, 15(11):1050-1052(in Chinese). [5] GUO Sh F, CHENG X A, FU X Q, et al.Failure of array CCD irradiated by high-repetitive femto-second laser[J]. High Power Laser and Particle Beams, 2007, 19(11):1783-1786(in Chinese). [6] CHENG X A, LU Q Sh, MA L Q, et al. Experimental study of HgCdTe(PV) detector irradiated by CW 1.319μm laser[J]. Acta Optica Sinica, 2003, 23(5):622-626(in Chinese). [7] ZHANG Ch, WANG B, LIAO Zh Y, et al.Experimental study on disturbing effect of pulsedlaser against array CCD imaging systems[J].Laser Technology, 2014, 38(5):619-622(in Chinese). [8] NI X W, LU J, HE A Zh. Study of hard-destructive mechanism of the charge-coupled devices by a laser[J].Acta Physica Sinica, 1994, 43(11):1795-1802(in Chinese). [9] QIU D D, ZHANG Zh, WANG R, et al. Mechanism research of pulsed-laser induced damage to CCD imaging devices[J].Acta Optica Sinica, 2011, 31(2):0214006(in Chinese). doi: 10.3788/AOS [10] SINGH A P, KAPOOR A, TRIPATHI K N, et al. Laser damage studies of silicon surfaces using ultra-short laser pulses[J]. Optics & Laser Technology, 2002, 34(1):37-43. [11] LIU X, DU D, MOUROU G. Laser ablation and micromachining with ultrashort laser pulses[J]. IEEE Journal of Quantum Electronics, 1997, 33(10):1706-1716. doi: 10.1109/3.631270 [12] NIE J S, WANG X, LI H, et al. Thermal and mechanical damage in CCD detector induced by 1.06μm laser[J].Infrared and Laser Engineering, 2013, 42(s2):380-386(in Chinese). [13] YONEMOTO K. CCD/CMOS image sensor no Kiso to Ouyou[M].Beijing:Science Press, 2006:65-76(in Chinese). [14] LU J, NI X W, HE A Zh.Physics of interaction between laser and materials[M]. Beijing:Machinery Industry Press, 1996: 32-34(in Chinese). [15] SUN Ch W. Laser irradiation effect[M].Beijing:National Defend Industry Press, 2002:28-32(in Chinese). [16] LIN B P, TANG J N, LIU H J, et al.Structure and infrared emissivity of polyimide/mesoporoussilica composite films[J].Journal of Solid State Chemistry, 2005, 178(3):650-654. doi: 10.1016/j.jssc.2004.12.010 [17] SHAO C M, LUO Y, XU G Y, et al.Preparation and infrared emissivity properties of core-shell structured SiO2@ Bi2O3 spheres[J].Materials Science & Technology, 2010, 18(1): 43-45(in Chinese). [18] WANG X L.Preparation and properties of PI/SiO2-Al2O3 nanocomposite films[D].Harbin: Harbin University of Science and Technology, 2009: 4-5(in Chinese).