高级检索

不同脉宽纳秒激光致铝材损伤特性与打孔机理

娄德元, 熊厚, 伍义刚, 翟中生, 陈列, 戚得众, 杨奇彪, 刘顿

娄德元, 熊厚, 伍义刚, 翟中生, 陈列, 戚得众, 杨奇彪, 刘顿. 不同脉宽纳秒激光致铝材损伤特性与打孔机理[J]. 激光技术, 2017, 41(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.024
引用本文: 娄德元, 熊厚, 伍义刚, 翟中生, 陈列, 戚得众, 杨奇彪, 刘顿. 不同脉宽纳秒激光致铝材损伤特性与打孔机理[J]. 激光技术, 2017, 41(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.024
LOU Deyuan, XIONG Hou, WU Yigang, ZHAI Zhongsheng, CHEN Lie, QI Dezhong, YANG Qibiao, LIU Dun. Damage threshold and drilling mechanism of aluminum plate by nanosecond laser with different pulse widths[J]. LASER TECHNOLOGY, 2017, 41(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.024
Citation: LOU Deyuan, XIONG Hou, WU Yigang, ZHAI Zhongsheng, CHEN Lie, QI Dezhong, YANG Qibiao, LIU Dun. Damage threshold and drilling mechanism of aluminum plate by nanosecond laser with different pulse widths[J]. LASER TECHNOLOGY, 2017, 41(3): 427-432. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.024

不同脉宽纳秒激光致铝材损伤特性与打孔机理

基金项目: 

东北大学轧制技术与连轧自动化国家重点实验室开放课题基金资助项目 2016001

湖北省高等学校优秀中青年科技创新团队计划资助项目 610112052

国家科技支撑计划资助项目 2015BAF20B03

湖北省教育厅科技研究计划资助项目 Q20151408

湖北省教育厅科技研究计划资助项目 B2016051

详细信息
    作者简介:

    娄德元(1979-), 男, 博士, 现从事激光加工的研究。E-mail:Loudeyuan@mail.hbut.edu.cn

  • 中图分类号: TG665

Damage threshold and drilling mechanism of aluminum plate by nanosecond laser with different pulse widths

  • 摘要: 为了获得纳秒激光脉宽对铝材的损伤特性,给纳秒激光金属加工的脉宽选择提供依据,采用面积推算法,利用光学显微镜、扫描电镜、表面轮廓仪等仪器,测试了37种脉宽纳秒激光(脉宽10ns~520ns,波长1064nm)对铝材的损伤阈值。研究了脉宽不变时激光脉冲数目对铝板的损伤规律,揭示了不同脉宽纳秒激光对铝板打孔的作用机理。结果表明,单脉冲损伤阈值与纳秒激光脉宽的平方根成线性关系。当脉冲个数增加时,材料的损蚀阈值呈现下降趋势; 铝板打孔时,纳秒激光的脉宽越窄,对铝的损伤阈值越低; 打孔过程中蒸发过程占主导,孔内壁烧蚀熔融物越少,孔圆度越好,孔口喷溅物越少,打孔质量越高。该结果可为纳秒激光金属加工的脉宽选择提供参考。
    Abstract: In order to get the damage features of nanosecond laser pulse width to aluminium and provided the basis for choosing proper pulse width in the processing of metals by nanosecond laser, by using the area calculation method and instruments (optical microscope, scanning electron microscope and surface profiler), the damage thresholds of 37 kinds of nanosecond laser (pulse width of 10ns~520ns, wavelength of 1064nm) on aluminium were obtained. The effects of laser pulse number on damage thresholds of aluminium were analyzed with constant pulse width. The function mechanism of nanosecond laser pulse width on the quality of drilling holes in aluminium was also revealed. The results show that the damage threshold of single pulse is linearly related to the square root of laser pulse width of nanosecond laser. The damage threshold of aluminium decreases with the increase of the number of pulse width. The narrower the pulse width of nanosecond laser is, the higher the damage threshold to aluminium is. Evaporation process occupies the leading position during the drilling process. Furthermore, the less the melted thing on the inner wall of hole is, the better the circular degree of hole will be. The less the spraying materials in the orifice is, the higher the quality of drilling will be. The results provide the guide for choosing proper pulse width in the processing of metals with nanosecond laser.
  • Figure  1.   System of experimental processing

    Figure  2.   a—Gaussian distribution b—laser beam waist

    Figure  3.   Relationship between pulse energy density logarithm and diameter square with different pulse widths

    a—τ=145ns b—τ=100ns c—τ=60ns d—τ=33ns

    Figure  4.   Relationship between damage thresholds and 37 pulse widths

    a—pulse width b—square root of pulse width

    Figure  5.   Relationship between laser power logarithm and ablation diameter square with different laser pulse

    Figure  6.   Relationship between damage threshold and number of pulse

    Figure  7.   Effect of pulse width on ns laser micro-drilling

    a—τ=33ns b—τ=60ns c—τ=100ns d—τ=145ns

    Figure  8.   Cross-cectional view of the holes drilled with different pulse widths

    a—τ=33ns b—τ=60ns c—τ=100ns d—τ=145ns

    Figure  9.   Melting layer thickness vs. pulse width

    Figure  10.   SEM and EDS of spatters

    Figure  11.   EDS elemental analysis of spatters

    a—splash b—particle

    Figure  12.   The minimum area method

    Figure  13.   Relationship between roundness error and pulse width

    Table  1   Experiment parameters of multi-pulse damage threshold

    No. duration/s number
    of pulses
    laser fluence/(J·cm-2)
    1 1/150 1 28.22, 30.27, 32.46, 34.47, 36.6
    2 20/150 20 28.22, 30.27, 32.46, 34.47, 36.6
    3 40/150 40 28.22, 30.27, 32.46, 34.47, 36.6
    4 80/150 80 28.22, 30.27, 32.46, 34.47, 36.6
    5 160/150 160 28.22, 30.27, 32.46, 34.47, 36.6
    6 320/150 320 28.22, 30.27, 32.46, 34.47, 36.6
    7 500/150 500 28.22, 30.27, 32.46, 34.47, 36.6
    下载: 导出CSV

    Table  2   Damage threshold of aluminum under different laser pulse

    number of pulses 1 20 40 80 160 320 500
    damage threshold/
    (J·cm-2)
    5.92 4.84 4.33 3.95 3.78 3.71 3.69
    下载: 导出CSV
  • [1]

    WANG X D, MICHALOWSKI A, WALTER D. Laser drilling of stainless steel with nanosecond double pulse[J]. Optics & Laser Technology, 2009, 41(2): 148-153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0575573f2556b5c2e233f68f5ca24d80

    [2]

    WANG X D, ZHAO X M, WANG Sh L, et al. The study on dynamic and high speed laser drilling system[J]. Laser Technology, 2003, 27(6): 563-566(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200306029

    [3]

    WANG Z Y, LI Q. Comparison of drilling between free running and acoustic-optical Q-switch-Ed laser[J]. Chinese Journal of Lasers, 2002, 29(6): 552-555. http://www.opticsjournal.net/ViewObject.htm?oid=OJ130223000197JfMiOl&otype=OJ

    [4]

    TOSTO S. Modeling and computer simulation of pulsed laser induced ablation[J]. Applied Physics, 2002, A68(4): 439-446. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be6fc04cffebde2b78ccea4bb28224f8

    [5]

    HAN Y X, CHEN P F, ZHOU Zh Y, et al. Laser perforating technology of tipping paper[J]. Laser Technology, 2002, 26(5): 330-333 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs200205018

    [6]

    CHEN L, WANG J, LIU D. Experimental and mechanism analysis of holes drilling on rubber damping material using nanosecond laser[J]. Acta Optica Sinica, 2015, 35(s2): 173-178 (in Chinese).

    [7]

    ZHANG H, DI J, ZHOU M, et al. A comparison in laser precision drilling of stainless steel 304 with nanosecond and picosecond laser pulses[J]. Chinese Journal of Mechanical Engineering, 2014, 27(5): 972-977. DOI: 10.3901/CJME.2014.0723.125

    [8]

    CHEN X, LOTSHAW W T, ORTIZ A L, et al. Laser drilling of advanced materials: effects of peak power, pulse format and wave length[J]. Journal of Laser Applications, 1996, 8(5): 233-239. DOI: 10.2351/1.4745427

    [9]

    NATH A K. Laser drilling of metallic and nonmetallic substrates[J]. Comprehensive Materials Processing, 2014, 5(9): 177-194. http://www.sciencedirect.com/science/article/pii/B9780080965321009043

    [10]

    MANNION P T, MAGGEE J, COYNE E, et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air[J]. Applied Surface Science, 2004, 233(1/4): 275-287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4f56a7b81079a4efcc221ea43c784a6c

    [11]

    YASEEN N, BASHIR S, SHABBIR M K, et al. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis[J]. Physica: Condensed Matter, 2016, B490: 31-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e3d9657008aabd8fd70b7f3294dd530b

    [12]

    STUART B, FEIT M D, RUBENCHIK A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 1995, 74(12): 2248-2251. DOI: 10.1103/PhysRevLett.74.2248

    [13]

    BULGAKOVA N M, EVTUSHENKO A B, SHUKHOVY G, et al. Role of laser-induced plasma in ultra deep drilling of materials by nanosecond laser pulses[J]. Applied Surface Science, 2011, 257(24): 10876-10882. DOI: 10.1016/j.apsusc.2011.07.126

    [14]

    KRSTULOVIC' N, MILOŠEVIC' S. Drilling enhancement by nanosecond-nanosecond collinear dual-pulse laser ablation of titanium in vacuum[J]. Applied Surface Science, 2010, 256(13): 4142-4148. DOI: 10.1016/j.apsusc.2010.01.098

    [15]

    JYWE W Y, LIU C H, CHEN C K. The min-max problem for evaluating the form error of a circle[J]. Measurement, 1999, 26(4): 273-282. DOI: 10.1016/S0263-2241(99)00052-4

    [16]

    BHARATISH A, MURTHY H, ANAND B, et al. Characterization of hole circularity and heat affected zone in pulsed CO2 laser drilling of alumina ceramics[J]. Optics & Laser Technology, 2013, 53(53): 22-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=69fea565fa06a337e15ae728a6c0fd62

  • 期刊类型引用(7)

    1. 孙佳鑫,钱传鹏,徐作冬,张检民,叶锡生. 长波量子阱红外探测器激光辐照损伤脉宽效应数值模拟. 激光与光电子学进展. 2024(21): 290-297 . 百度学术
    2. 胡蔚敏,王小军,田昌勇,杨晶,刘可,彭钦军. 脉宽对中红外激光带内损伤HgCdTe材料的影响. 强激光与粒子束. 2022(01): 130-137 . 百度学术
    3. 王云萍,侯军燕,袁春,康文运,陈安民,张鲁薇. 飞秒激光对多光谱滤波片的损伤阈值研究. 激光技术. 2022(05): 697-701 . 本站查看
    4. 李玉瑶,王菲,孙同同. 薄膜激光损伤阈值标定技术. 激光技术. 2021(06): 729-734 . 本站查看
    5. 白凤凤,武桂芬. 光学薄膜激光损伤阈值的智能检测研究. 激光杂志. 2020(02): 171-175 . 百度学术
    6. 周冰,贺宣,刘贺雄,李秉璇,张炎. 激光辐照非制冷微测辐射热计的理论研究. 激光技术. 2020(04): 411-417 . 本站查看
    7. 任晓东,雷武虎,曾凌清,王勇. 基于相对运动的脉冲激光辐照探测器热效应数值分析. 光子学报. 2019(01): 105-111 . 百度学术

    其他类型引用(2)

图(13)  /  表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 9
出版历程
  • 收稿日期:  2016-04-24
  • 修回日期:  2016-07-05
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回