高级检索

硅基片上刻蚀衍射光栅及其平坦化设计

陈鑫, 武爱民, 仇超, 黄海阳, 赵瑛璇, 盛振, 李伟, 甘甫烷

陈鑫, 武爱民, 仇超, 黄海阳, 赵瑛璇, 盛振, 李伟, 甘甫烷. 硅基片上刻蚀衍射光栅及其平坦化设计[J]. 激光技术, 2017, 41(3): 361-366. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.012
引用本文: 陈鑫, 武爱民, 仇超, 黄海阳, 赵瑛璇, 盛振, 李伟, 甘甫烷. 硅基片上刻蚀衍射光栅及其平坦化设计[J]. 激光技术, 2017, 41(3): 361-366. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.012
CHEN Xin, WU Aimin, QIU Chao, HUANG Haiyang, ZHAO Yingxuan, SHENG Zhen, LI Wei, GAN Fuwan. Etching diffraction grating of silicon substrate and design of flatten[J]. LASER TECHNOLOGY, 2017, 41(3): 361-366. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.012
Citation: CHEN Xin, WU Aimin, QIU Chao, HUANG Haiyang, ZHAO Yingxuan, SHENG Zhen, LI Wei, GAN Fuwan. Etching diffraction grating of silicon substrate and design of flatten[J]. LASER TECHNOLOGY, 2017, 41(3): 361-366. DOI: 10.7510/jgjs.issn.1001-3806.2017.03.012

硅基片上刻蚀衍射光栅及其平坦化设计

基金项目: 

国家自然科学基金资助项目 61475180

上海市自然科学基金资助项目 16ZR1442600

国家自然科学基金资助项目 61275112

国家自然科学基金资助项目 11204340

上海市自然科学基金重点资助项目 14JC1407600

详细信息
    作者简介:

    陈鑫(1990-), 男, 硕士研究生, 现主要从事硅基光互连方面的研究

    通讯作者:

    甘甫烷, E-mail:fuwan@mail.sim.ac.cn

  • 中图分类号: TN256

Etching diffraction grating of silicon substrate and design of flatten

  • 摘要: 刻蚀衍射光栅(EDG)作为实现波分复用功能的关键器件,对于片上光互连的实现至关重要。为了实现1310nm波段通道间隔为20nm的硅基EDG,采用了基尔霍夫标量衍射理论仿真方法进行理论设计和仿真验证,通过在闪耀光栅反射面引入布喇格反射光栅来提高反射效率、降低器件插入损耗,并在入射波导处引入多模干涉耦合器以实现通道频谱平坦化设计。结果表明,闪耀光栅反射面的反射效率由35%提高到了85%,1dB带宽达到12nm。这对于提高系统稳定性、增大传输距离和容量、降低系统成本具有显著作用,能够满足光互连系统的实际应用需求。
    Abstract: Etching diffraction grating (EDG), one of the most critical components, can achieve wavelength division multiplex (WDM) function and realize on-chip optical interconnection. In order to realize 4-channel EDG with the wavelength spacing of 20nm at 1310nm wavelength, Kirchhoff scalar diffraction theory was used for theory design and simulation verification. To further improve the reflection efficiency and decrease the insertion loss, Bragg reflection gratings were designed to replace the normal etched facets. Multimode interference (MMI) coupler was also introduced at input waveguide for flat-top frequency response. The simulation results demonstrate the reflection efficiency of grating reflective surface is up to 85% and 1dB bandwidth is up to 12nm. The designed EDG has a significant effect on improving system stability, increasing transmission distance and capacity, and reducing system cost. The design can meet the practical application requirements of optical interconnection system.
  • Figure  1.   Schematic of EDG based on Rowland circle

    Figure  2.   Schematic of SOI grating

    a—facet reflector b—Bragg reflector

    Figure  3.   Relationship between reflectivity and wavelength of Bragg reflector

    Figure  4.   Electric field intensity distribution of input ridge waveguide and 1-D diagram

    Figure  5.   a—incident electric field at the center point of each grating facet for λ=1.301μm b—output electric field distribution on Rowland circle c—transmission spectrum of 4-channel EDG

    Figure  6.   a—EDG input/output waveguide based on MMI b—electric field intensity of input waveguide based on the cascaded taper and MMI c—1-D electric field intensity of end face

    Figure  7.   EDG structure based on MMI and Bragg reflector

    Figure  8.   a—flat-top spectral response with different WMMI (Wo=2μm) b—transmission spectrum of 4-channel flat-top EDG (WMMI=4μm, Wi=3μm)

    Table  1   Design parameters of 4-channel EDG

    λ0 Δλ N θi θd m dLD H
    1301nm 20nm 4 42° 36° 10 250 220nm
    下载: 导出CSV
  • [1]

    ZHANG B, SONG Sh H, WANG H J, et al. A novel micro-ring-based 4×4 non-blocking silicon optical router[J]. Laser Technology, 2013, 37(6):731-735 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201306006

    [2]

    BROUCKAERT J, BOGAERTS W, DUMON P, et al. Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform [J]. Journal of Lightwave Technology, 2007, 25(5): 1053-1060. http://ieeexplore.ieee.org/document/4167948/

    [3]

    CHOWDHURY D. Design of low-loss and polarization-insensitive reflection grating-based planar demultiplexers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(2): 233-239. DOI: 10.1109/2944.847758

    [4]

    FENG D, QIAN W, LIANG H, et al. Fabrication intensive echelle grating in silicon-on-insulator platform [J]. IEEE Photonics Technology Letters, 2011, 23(5): 284-287. http://ieeexplore.ieee.org/document/5675664/

    [5]

    ZOU J, JIANG X X, XIA X, et al. Ultra-compact birefringence-compensated arrayed waveguide grating triplexer based on silicon-on-insulator [J]. Journal of Lightwave Technology, 2013, 31(12): 1935-1940. DOI: 10.1109/JLT.2013.2261857

    [6]

    WANG J, SHENG Z, LI L, et al. Low-loss and low-crosstalk 8×8 silicon nanowire AWG routers fabricated with CMOS technology [J]. Optics Express, 2014, 22(8): 9395-9403. DOI: 10.1364/OE.22.009395

    [7]

    YE T, FU Y, QIAO L, et al. Low-crosstalk Si arrayed waveguide grating with parabolic tapers [J]. Optics Express, 2014, 22(26): 31899-31906. DOI: 10.1364/OE.22.031899

    [8]

    ZHENG X Z, SHUBIN I, LI G L, et al. A tunable 1×4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects [J]. Optics Express, 2010, 18(13): 5151-5160. http://www.ncbi.nlm.nih.gov/pubmed/20389528

    [9]

    FANG Q, PHANG Y T, TAN C W, et al. Multi-channel silicon photonic receiver based on ring-resonators [J]. Optics Express, 2010, 18(13): 13510-13515. DOI: 10.1364/OE.18.013510

    [10]

    HORST F, GREEN W M J, ASSEFA S, et al. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing [J]. Optics Express, 2013, 21(10): 11652-11658. DOI: 10.1364/OE.21.011652

    [11]

    JEONG S, TANAKA S, AKIYAMA T, et al. Flat-topped and low loss silicon-nanowire-type optical MUX/DeMUX employing multi-stage microring resonator assisted delayed Mach-Zehnder interferometers [J]. Optics Express, 2012, 20(23): 26000-26011. DOI: 10.1364/OE.20.026000

    [12]

    AN J M, ZHANG J S, WANG Y, et al. Study on wavelength division multiplexer for silicon photonics [J]. Laser & Optoelectronics Progress, 2014, 51(11):110006 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGDJ201411007.htm

    [13]

    DENOYER G, COLE C, SANTIPO A, et al. Hybrid silicon photonic circuits and transceiver for 50Gb/s NRZ transmission over single-mode fiber [J]. Journal of Lightwave Technology, 2015, 33(6): 1247-1254. DOI: 10.1109/JLT.2015.2397315

    [14]

    TORRES-FERRERA P, PACHECO-RAMÍREZ L, GUTIÉRREZ-CASTREJÓN R, et al. Next-generation 400Gb/s ethernet PMD over SMF at 1310nm via DD-OFDM with electro-absorption modulator-based transmitters [C]//2015 7th IEEE Latin-American Conference on Communications. New York, USA: IEEE, 2015: 1-6.

    [15]

    STRESHINSKY M, DING R, LIU Y, et al. Low power 50Gb/s silicon traveling wave Mach-Zehnder modulator near 1300nm [J]. Optics Express, 2013, 21(25): 30350-30357. DOI: 10.1364/OE.21.030350

    [16]

    SHENG Z Y, HE S L, HE J J. 1-Stigma and 2-stigma method for the design of etched diffract ion grating [J]. Journal of Optoelectronics·Laser, 2001, 12(7): 671-674 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ200107003.htm

    [17]

    BROUCKAERT J, BOGAERTS W, SELVARAJA S, et al. Planar concave grating demultiplexer with high reflective Bragg reflector facets [J]. IEEE Photonics Technology Letters, 2008, 20(4): 309-311. DOI: 10.1109/LPT.2007.915585

    [18]

    SHENG Zh Y, HE S L, HE J J. Simulation for etching diffraction grating by use of scalar diffraction theory [J]. Opto-Electronic Engineering, 2001, 28(6): 29-32(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDGC200106007.htm

图(8)  /  表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-10
  • 修回日期:  2016-05-03
  • 发布日期:  2017-05-24

目录

    /

    返回文章
    返回