-
所谓烧蚀阈值就是对材料产生不可逆破坏时去除单层材料所需能流密度[12],单脉冲激光能量密度很大程度上决定着激光烧蚀的效率。理论上来讲,激光脉冲能量稍大于烧蚀阈值时加工质量最好,但在实际中由于能量不同程度的散失,一般经验表明,在合理的去除速率条件下最好的精度可以通过功率密度选择在5倍~10倍的阈值激光脉冲获得。因此分析PCBN激光烧蚀阈值可以一定程度上指导实验,避免能量过大造成裂纹和能量过小造成的切不透或者效率低等现象。
目前确定烧蚀阈值的方法主要有在线观测、形貌检测及数值计算等。本实验中采用数值计算的方法[13]并辅以显微观测,推导出烧蚀直径D与脉冲激光能量E的函数关系,将线性曲线外推至D=0处,从而得出材料的破坏阈值,同时还能够获得光束的焦点半径。
不同能量密度的激光加工PCBN时, 材料表面会形成不同直径的孔,得到半径r与脉冲能量E的关系为[14]
$ {r^2} = {\rho ^2}{\rm{ln}}\left( {\frac{{{E_0}}}{{{E_{{\rm{th}}}}}}} \right) $
(1) 式中,ρ为脉冲空间半径,E0为入射脉冲激光能量,Eth为烧蚀半径为r时的脉冲激光能量。光束焦点半径w0的平方是空间半径ρ平方的2倍,因此(1)式可以变为普遍的研究烧蚀直径D与聚焦后焦点半径w0以及入射脉冲激光能量E0的关系[15]:
$ {D^2} = 2{w_0}^2{\rm{ln}}{E_0} - 2{w_0}^2{\rm{ln}}{E_{{\rm{th}}}} $
(2) 此处应当指出,本实验中为多脉冲烧蚀,单脉冲与多脉冲烧蚀阈值之间关系式可表示为[16]:
$ \begin{array}{c} {F_{{\rm{th}}}}(N) = {F_{{\rm{th}}}}\left( \infty \right) + \\ \left[ {{F_{{\rm{th}}}}\left( 1 \right) - {F_{{\rm{th}}}}\left( \infty \right)} \right] \exp\left[ { - a\left( {N - 1} \right)} \right] \end{array} $
(3) 式中,Fth(1)为单脉冲烧蚀阈值;Fth(∞)为多脉冲烧蚀阈值;a为能量累积强度;N为脉冲个数。由此可见,当脉冲个数逐渐增大,烧蚀阈值有减小的趋势,这是因为多脉冲烧蚀存在着能量累积。当脉冲个数增大到一定数值时烧蚀阈值趋近定值,且材料的吸收系数越大烧蚀阈值就越低。
通过PCBN不同激光功率密度下的烧蚀显微观测,获得了入射脉冲激光能量E0与烧蚀孔径形貌之间的关系如图 2所示。
拟合数据结果得到斜率k(k=2w02)值为2361.5,推出激光焦点半径w0=34.4μm,同时依据上述理论,由拟合直线与横坐标截距,可得出脉冲宽度100μs、重复频率50Hz、波长1064nm、脉冲时间0.5s时,PCBN激光烧蚀阈值为1.796J/cm2。
从烧蚀阈值来看,完成PCBN去除仅需要微小能量,但对于2mm厚的PCBN来讲,实现高效的激光切割能量远远不够,能量过小会造成如图 3a所示的切不透现象。同时多次试验表明,过小能量切割PCBN表面粗糙度较差。由于PCBN材料的脆硬性影响,能量过大则会出现严重的崩边与裂纹,如图 3c所示。在图 3b中看到,孔右上角部分呈现椭圆形貌,那是因为激光光束垂直度不足导致,该现象也是导致切缝较宽表面质量差的一个重要原因。
-
切割速率的变化意味着激光与材料相互作用时间的变化,材料在单位面积上得到的激光能量发生改变。图 4为激光功率为20W、脉冲频率为50Hz、切割速率分别为10mm/min, 20mm/min, 30mm/min, 40mm/min时,切缝宽度与锥度的变化情况。通过实验可以看出,随着激光切割速率的增大,切缝宽度有减小趋势,但上缝宽基本维持在121μm左右,如图 5a和图 5b所示变化不大,下缝宽变化较为明显,这直接反映到切割锥度上。切割速率增大,切缝锥度变大,切割质量有所降低。这是由于激光作用时间减小,能量密度降低,材料获得能量较少导致。切割速率过高易造成切口清渣不净或切不透,切割速率过低会造成如图 5c中所示的材料过烧现象,切口宽度和材料热影响区过大、切割质量较差、生产效率低。由此可见,切割速率为20mm/min时的PCBN激光切割质量要优于其它3种。
-
激光能量是切割过程得以进行的主要能量来源,功率大小将直接影响切割时的能量密度。图 6为采用脉冲频率50Hz、切割速率30mm/min、激光功率分别为16W, 20W, 24W, 28W时,切缝宽度与锥度随功率的变化情况。由实验可知,激光功率对切缝宽度和锥度有重要影响,随着功率的增大,切缝宽度增大锥度减小,材料去除量增加。
-
图 7为不同频率下缝宽和锥度的变化曲线。其中激光功率20W,切割速率30mm/min,脉冲频率分别为30Hz, 40Hz, 50Hz, 60Hz。从图中看出,激光脉冲频率对切缝宽度影响最大。随着频率的增大,缝宽显著减小,同时切割锥度也随之减小。脉冲频率的大小决定着激光光斑的重叠程度,图 8为PCBN激光切割、掰片、简单去熔渣后断面形貌图。上层为PCBN,下层为硬质合金。图中能明显看出切割后的条纹形状。根据单脉冲激光能量E与平均输出功率Pave和脉冲频率f的关系式E=Pave/f可知,随着脉冲频率的增加,单脉冲能量减小,光斑重叠度增大,这对表面切割质量的提高和裂纹的减少起着重要作用。
-
PCBN的切割质量与激光作用在材料表面的能量密度有重要关系,激光功率和切割速率决定着材料单位面积获得激光能量的大小。激光斑点上的功率密度I可表示为[17]:
$ I = \frac{{4E}}{{{\rm{ \mathsf{ π} }}{d^2}{t_{\rm{p}}}}} $
(4) 式中,E为单脉冲激光能量,d为光斑直径,tp为脉冲宽度。在脉宽和频率一定时,提高输出功率能增大激光束功率密度,较高的功率密度使加工过程中产生更多的蒸汽相物质,切割宽度和深度增大,断面质量较好,也利于后续加工,如图 9所示。功率的增加使切割速率范围也随之扩大,提高了切割的质量稳定性和效率,但要避免功率过大而造成的崩边。脉冲频率的增加,单脉冲能量减小,峰值功率降低,缝宽和锥度随之减小。
激光脉冲频率和脉冲宽度对裂纹的减少以及表面切割质量的提高有着重要影响。从传热学可知,热穿透深度为$\sqrt {4\alpha t} $(其中α为热扩散系数,t为热作用时间),可估算出脉宽为100μs的Nd: YAG激光切割材料热穿透深度约为350μm[18]。脉冲宽度越窄,热影响区越小,烧蚀阈值也越小[14]。当脉冲宽度低于能量传递弛豫时间时,能够实现材料的“冷加工”去除[19],有效改善切割表面质量。但短脉冲激光加工效率往往很低,无法实现超硬材料的快速切割。因此,如何兼顾质量与效率一直是值得探讨的话题。
长脉宽激光切割聚晶立方氮化硼工艺研究
Technological study on long pulse laser cutting of polycrystalline cubic boron nitride
-
摘要: 为了获得聚晶立方氮化硼(PCBN)最优的激光切割质量和切割效率,依据烧蚀直径和入射激光脉冲能量的函数关系,得出PCBN烧蚀阈值为1.796J/cm2。采用Nd:YAG激光器对型号为BN250的PCBN进行切割试验,分析了切割速率、激光功率以及脉冲频率对切割质量的影响规律。通过切缝的显微观测对比,总结出不同激光工艺参量下PCBN缝宽的变化趋势。结果表明,对于脉宽为100μs的激光,当激光功率为28W、脉冲频率为60Hz、切割速率为20mm/min时,能够获得PCBN激光切割的最优切缝和较高的切割效率。该工艺方法和数据的建立,对今后PCBN或其它超硬材料的激光加工有着重要参考价值。Abstract: In order to obtain the optimal laser cutting quality and efficiency of polycrystalline cubic boron nitride(PCBN), the ablation threshold of PCBN material was obtained as 1.796J/cm2, based on the function relationship between the ablation diameter and laser energy. Cutting experiments of model BN250 PCBN with Nd:YAG laser were carried out. The effects of cutting speed, laser power and pulse repetition rate on cutting quality were analyzed. The changing trend of slit width of PCBN under different laser parameters was summarized by contrasting the microscopic observation. The results show that, the best quality of slit and the higher cutting efficiency can be obtained at the condition of laser power 28W, pulse repetition rate 60Hz, and cutting speed 20mm/min, by laser pulse with pulse duration 100μs. The method and process data have an important reference value for laser processing of PCBN or other superhard materials.
-
-
[1] LIU Y, LÜ Zh, GUO H, et al. Strategic consideration on developing polycrystalline cubic boron nitride in China[J]. Tool Engineering, 2008, 42(8):3-6 (in Chinese). [2] DEN F M, CHEN Q W. Manufacturing, properties and applications of PDC cutting tool material[M]. Beijing:Chemical Industry Press, 2003:16-17 (in Chinese). [3] CHEN Y J, WANG H K, PENG J, et al. Production methods and application of polycrystalline cubic boron nitride[J]. Diamond & Abrasives Engineering, 2015, 35(2):74-79 (in Chinese). [4] LIU X L. PCBN tool and its application[M]. Harbin:Heilongjiang Science and Technology Press, 1999:20-50 (in Chinese). [5] KOU Z L, LI Y, DOU Y W. Situation and development of PCD/PCBN tools[C]//Superhard Materials and Products Professional Committee of Chian Materials Research Society. 50th Anniversary of China Superhard Materials and Products Featured Book. Hangzhou: Zhejiang University Press, 2014: 435-441 (in Chinese). [6] ZHANG L L, LIN F, LIU Z H, et al. Discussion on the development and applications of PCBN in China[C]//Superhard Materials and Products Professional Committee of Chian Materials Research Society. 50th Anniversary of China Superhard Materials and Products Featured Book. Hangzhou: Zhejiang University Press, 2014: 219-225 (in Chinese). [7] HE H H, LÜ Z, LIN F, et al. Factors of influencing on the process property of PCBN[J]. Superhard Material Engineering, 2007, 19(2):6-10 (in Chinese). [8] JIANG W, PAN Y, LI L W, et al. Influence of synthetic pressure on wear resistance and electric conductivity of PCBN compacts[J]. Superhard Material Engineering, 2011, 23(3):16-18 (in Chinese). [9] XIAO L, ZENG M X, WU H H, et al. Study on cutting technology of PCBN tool[J]. Tool Engineering, 2005, 39(10):12-14 (in Chinese). [10] HUANG F M, XIE X Z, WEI X, et al. Newly developed techniques for laser dicing wafer[J]. Laser Technology, 2012, 36(3):293-297 (in Chinese). [11] WU Z R, MELAIBARI A, MOLIAN P, et al. Hybrid CO2 laser/waterjet (CO2-LWJ) cutting of polycrystalline cubic boron nitride (PCBN) blanks with phase transformation induce fracture[J]. Optics and Laser Technology, 2015, 70:39-44. doi: 10.1016/j.optlastec.2015.01.013 [12] PECHOLT B, VENDAN M, DONG Y Y, et al. Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(3):239-250. [13] LENZNER M, KRÜGER J, SARTANIA S, et al. Femtosecond optical breakdown in dielectrics[J]. Physical Review Letters, 1998, 80(18):4076-4079. doi: 10.1103/PhysRevLett.80.4076 [14] ZHAO Q L, JIANG T, DONG Z W, et al. Ablation threshold and material removal mechanisms of SiC processed by femtosecond laser[J]. Journal of Mechanical Engineering, 2010, 46(21):172-177 (in Chinese). doi: 10.3901/JME.2010.21.172 [15] GUDDE J, HOHLFELD J, MULLERL J, et al. Damage threshold dependence on electron-photon coupling in Au and Ni films[J]. Applied Surface Science, 1998, 127/129:40-45. doi: 10.1016/S0169-4332(98)00002-6 [16] DONG Y Y, MOLIAN P. Femtosecond plused laser ablation of 3C-SiC thin film on silicon[J]. Applied Physics, 2003, A77(6):839-846. [17] ZHOU B K, GAO Y Z, CHEN T R, et al. The principle of laser[M]. 7rd ed. Beijing:National Defense Industry Press, 2014:145-147 (in Chinese). [18] WU Y, ZHANG G F. Damage analysis of PDC cutted by Nd:YAG laser and WEDM[J]. China Mechanical Engineering, 2010, 21(9):1034-1039 (in Chinese). [19] JI L F, LING C, LI Q R, et al. Research progress and development of industrial application of picosecond laser processing[J]. Journal of Mechanical Engineering, 2014, 50(5):115-126 (in Chinese). doi: 10.3901/JME.2014.05.115