-
大模场双包层光纤主要由纤芯、内包层和外包层构成,其中纤芯的折射率最大,外包层的折射率最小。它与普通单模光纤的主要不同之处是其存在两个包层,光不仅可以在纤芯中传输,也可以在内包层中传输,而且在纤芯内不止可以传播一个模式[10-11]。为了实现双包层光纤的熔接对准,构建如图 1所示的熔接对准系统。光源由单模光纤输出,经过模场匹配器(mode field adaptor, MFA)后进入第1根待熔光纤(fiber-1),为了抑制MFA和待熔光纤的熔接点处产生的高阶模光和包层光的影响,光纤经盘绕并有包层光功率剥离器(cladding power stripper, CPS)剥离包层光。光束由第1根待熔光纤(fiber-1)耦合进第2根待熔光纤(fiber-2)。同样地,通过光纤盘绕和包层光剥离后,光束输出到光功率计。
光纤对准时,光纤的径向偏移d、端面间隙z和光纤角度θ(如图 2所示,n1和n2分别为纤芯和内包层折射率)都会造成激光传输场的变化,在纤芯中激发出高阶模,影响熔接点处的耦合效率。由于光纤熔接时,光纤角度能够控制到0.1°以下,光纤端面角度能控制到0.3°以内,光纤端面间距可以自己设定,所以本文中主要对大模场双包层光纤纤芯中基模传输和多模传输情况下的光纤熔接对准时光纤的径向偏移与光纤耦合效率的关系进行研究。
-
设激光在双包层光纤的纤芯中传输,且为基模。则对两根参量完全相同的大模场双包层光纤在光纤熔接机中进行熔接,两个待熔端面均放在空气中(n=1),不考虑光纤端面反射损耗,根据经典波动理论,光纤熔接对准时从fiber-1到fiber-2的光功率耦合效率为[12-13]:
$ T = \left| {\smallint {E_{\rm{i}}}{E_{\rm{r}}}^*{\rm{d}}S} \right|{^2} $
(1) 式中,Ei为接收光纤端面的模式场分布,Er为发射光纤端面的模式场分布,上标*表示共轭,积分区域S为两根光纤的重叠面积。光纤纤芯中传播的基模的光场分布可近似为高斯分布,则对准处耦光纤耦合效率为:
$ T = M{\rm{exp}}(N{d^2}) $
(2) 式中,d为光纤的径向偏移量,M和N为常数。由(2)式可知,耦合效率与光纤径向偏移量为高斯型关系,在高斯曲线对称轴处的耦合效率最大。
-
纤芯中存在高阶模的情况下,在连接点处要对两根光纤的光功率损耗进行精确的估计和分析比较困难,因为光功率损耗取决于光纤中模式间的光功率分配,假设光纤中所有模式被同等地激励,此时光纤的光束充满了整个光纤的数值孔径,可以采用几何方法进行计算分析[14]。光功率耦合效率为:
$ T = {A_0}/A $
(3) 式中,A为发射光纤整个纤芯的数值孔径范围,是以r1=a+ztanθc为半径的圆的面积;A0是以r2=a为半径的圆与以r1为半径的圆的重叠部分面积; a为纤芯半径; θc为双包层光纤纤芯数值孔径角; z为常数。
随着光纤径向偏移量d的变化,耦合效率的计算存在如图 3所示两种情况,则光纤对准处光功率耦合效率为:
$ T = \left\{ \begin{array}{l} {r_2}^2/{r_1}^2, (0 \le \left| d \right| < {r_1} - {r_2})\\ \left( {\alpha {r_1}^2 + \beta {r_2}^2 - {\rm{ }}\left| d \right|{r_1}{\rm{sin}}\alpha } \right)/\left( {{\rm{ \mathit{ π} }}{r_1}^2} \right), \\ \;\;\;\;\left( {{r_1} - {r_2} \le {\rm{ }}\left| d \right|{\rm{ }} \le {r_1} + {r_2}} \right) \end{array} \right. $
(4) 为了方便计算,设α和β是如图 3所示中两个圆心与两个圆交点形成四边形的上下半角,则:
$ \left\{ \begin{array}{l} {\rm{cos}}\alpha = \left( {{r_1}^2 + {d^2} - {r_2}^2} \right)/\left( {2{\rm{ }}\left| d \right|{\rm{ }}{r_1}} \right)\\ {\rm{cos}}\beta = ({r_2}^2 + {d^2} - {r_1}^2)/(2{\rm{ }}\left| d \right|{\rm{ }}{r_2}) \end{array} \right. $
(5) 由(4)式和(5)式可知,纤芯中存在高阶模时,当径向偏移小于r1与r2的差值时,耦合效率不会变化,降低了光纤的径向对准精度。
-
仿真纤芯直径20μm、纤芯数值孔径(numerical aperture, NA)为0.065;包层直径400μm、内包层NA为0.46的双包层光纤对准时不同径向偏移下的耦合效率。设光纤中传播波长λ=1.064μm的光,纤芯中分别传输基模和高阶模时,光纤径向偏移量与光纤耦合效率关系如图 4所示。基模(single mode, SM)传输时,径向偏移量与光纤耦合效率关系曲线为高斯线型,在其中心轴处的耦合效率最高;若纤芯中存在高阶模(higher-mode, HM),光纤耦合效率在少量径向偏移时保持不变,峰值为一段直线,之后呈抛物线型变化;另外,从两条曲线的下降速度可以看出,高阶模存在时, 光纤耦合效率对径向偏移量变化反应没有单模传输时敏感。
大模场双包层光纤熔接的功率对准技术研究
Study on optical power alignment technique during the splice of large mode area double-cladding fiber
-
摘要: 为了提高高功率光纤激光器中大模场双包层光纤的熔接质量,采用NUFERN 20/400μm双包层光纤搭建了光功率对准系统,对大模场双包层光纤中存在包层光以及纤芯中只有基模和存在高阶模时光纤径向偏移与耦合效率的关系进行了理论分析和实验验证。结果表明,大模场双包层光纤中包层光和纤芯中高阶模的存在使耦合效率对径向偏移变化的敏感度降低,滤除包层光和高阶模后耦合效率随光纤径向偏移量呈高斯型变化; 使用光功率对准系统搭建千瓦级双端抽运激光系统,最大输出功率约1170W,光光转换效率约73%,光束质量约1.22,实现了千瓦级准单模输出。光功率对准技术能够实现待熔光纤的精确对准,对高功率光纤激光器输出性能的提升有重要意义。Abstract: In order to improve the splicing quality of large mode area double-cladding fiber, an optical power alignment system was designed by using NUFERN 20/400μm double-cladding fiber. The cladding light in the cladding layer and the basic-mode light in the core were verified. The relationship between core dislocation and coupling efficiency was analyzed theoretically and verified experimentally. The existence of the cladding light or the higher-order mode in the core reduced the sensitivity of coupling efficiency to core dislocation. After stripping the cladding light and the higher-order mode, the coupling efficiency varies with core dislocation as Gaussian shape. A double-ended pumping fiber laser system with kW level output power was built by using the optical power alignment system, with the maximum output power of 1170W, optical-to-optical conversion efficiency of about 73% and beam quality factor of around 1.22. Quasi-single-mode output of kW level was gotten. The results show that accurate alignment of double-caldding fiber can be achieved with optical power alignment technique. The study is important for the improvement of output performance of high power fiber lasers.
-
-
[1] JEONG Y C, BOYLAND A J, SAHU J K, et al. Multi-kilowatt single-mode ytterbium-doped large-core fiber laser[J]. Journal of the Optical Society of Korea, 2009, 13(4): 416-422. doi: 10.3807/JOSK.2009.13.4.416 [2] XIAO H, LENG J Y, ZHANG H W, et al. A 2.14kW tandem pumped fiber amplifier[J]. High Power Laser and Particle Beams, 2015, 27(1): 27010103(in Chinese). [3] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives invited[J]. Journal of the Optical Society of America, 2010, B27(11): B63-B92. [4] ZHANG X X, GE T W, TAN Q R, et al. Research of Yb-doped all fibre lasers[J]. Acta Photonica Sinica, 2015, 44(10): 1014002(in Chinese). doi: 10.3788/gzxb [5] ZHANG H, YANG CH P, LI W, et al. Characteristics of high-power all-fiber laser[J]. High Power Laser and Particle Beams, 2012, 24(6): 1287-1289(in Chinese). doi: 10.3788/HPLPB [6] WANG Y Sh, KE W W, SUN Y H, et al. Effect of core dislocation on performance of high power fiber laser[J]. High Power Laser and Particle Beams, 2014, 26(12): 26121001(in Chinese). [7] WANG B Q. Research of reducing the fiber fusion splicer splice loss[D]. Fuzhou: Fujian Normal University, 2012: 15-20(in Chinese). [8] PENG J Zh. The research of alignment system to the laser injection and optical power detection in the fiber fusion splicer[D]. Fuzhou: Fujian Normal University, 2014: 3-21(in Chinese). [9] YIN Sh P, YAN P, GONG M L, et al. Fusion splicing of double-clad specialty fiber using active alignment technology[J]. Chinese Optics Letters, 2011, 9(2): 020601. doi: 10.3788/COL [10] ZHANG J H. Study on high power ytterbium-doped fiber lasers and key components[D]. Wuhan: Huazhong University of Science and Technology, 2012: 11-14(in Chinese). [11] HUANG Ch. Investigation of high power ytterbium-doped double-clad fiber lasers[D]. Wuhan: Huazhong University of Science and Technology, 2008: 10-20(in Chinese). [12] MARCUSE D. Loss analysis of single-mode fiber splices[J]. Bell System Technical Journal, 1977, 56(5): 703-718. doi: 10.1002/bltj.1977.56.issue-5 [13] HUANG Sh L, SHI W J. Research of the connection loss of the single-mode fiber[J]. Acta Photonica Sinica, 1994, 23(2): 127-133(in Chinese). [14] OU P. The Simulation of the advanced optics(MATLAB)[M]. 2nd ed. Beijing: Beihang University Press, 2014:204-216(in Chinese). [15] LIANG Q T. Physical optics[M]. 3th ed. Beijing: Publishing House of Electronics Industry, 2008:75-96(in Chinese).